Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Алгебра и алгебраические системы

Название: Алгебра и алгебраические системы
Раздел: Рефераты по математике
Тип: реферат Добавлен 13:10:01 03 июля 2011 Похожие работы
Просмотров: 839 Комментариев: 2 Оценило: 1 человек Средний балл: 2 Оценка: неизвестно     Скачать

Рассматриваются бинарные и n-местные операции, виды бинарных операций, вводятся понятия алгебры, подалгебры, алгебраической системы, приводятся примеры.

п.1. Бинарные и n-местные операции.

Пусть - непустое множество, то есть .

Определение. Бинарной операцией на множестве называется ото­бражение прямого произведения .

Другими словами: если каждой упорядоченной паре элементов мно­жества поставлен в соответствие единственный элемент из , то гово­рят, что задана бинарная операция на множестве .

Пример.

Пусть - произвольные высказывания

: - бинарная операция на множестве высказываний.

Пусть - произвольные множества

: - бинарная операция на множестве множеств.

Пусть

: - бинарная операция на множестве действительных чисел.

: - не является бинарной операцией на множестве , так как .

Если - произвольная бинарная операция на множестве и паре ставится в соответствие элемент (то есть ), то вместо записи пишут , то есть имеем . Элемент называется компози­цией элементов .

Определение. Пусть . Отображение назы­вается - местной операцией на множестве . Число - ранг опера­ции.

Определение. Нульместной операцией на множестве называется выделение (фиксация) какого-нибудь элемента множества . Число назы­вается рангом нульместной операции.

Определение. Одноместные операции называются унарными опера­циями. Другими словами: унарная операция каждому элементу из множе­ства ставит в соответствие элемент из множества , то есть унарная опе­рация – это отображение множества во множество .

Унарную операцию называют оператором.

Пример.

Пусть - множество натуральных чисел

- унарная операция

- не является унарной операцией

На множестве высказываний операция : - унарная опера­ция

На множестве подмножеств универсального множества операция до­полнения – унарная операция.

Определение. Отображение из множества называется частич­ной - местной операцией на множестве , если область определе­ния отображения не совпадает с .

Виды бинарных операций

Пусть - бинарные операции на множестве .

Операция - коммутативна на множестве .

Операция - ассоциативна на множестве .

Операция - дистрибутивна слева относительно операции .

Операция дистрибутивна справа относительно операции .

Пример.

Операция на множестве - коммутативна, ассоциативна.

Операция на множестве - коммутативна, ассоциативна.

На множестве множеств операции и дистрибутивны относи­тельно друг друга.

На множестве функций композиция функций - ассоциативная опера­ция, не является коммутативной операцией.

п.2. Понятие алгебры.

Определение. Алгебра , где , - множество опера­ций на .

Другими словами: если мы говорим об алгебре, то считаем, что за­дано множество и заданы операции.

Пример.

Пусть - множество высказываний

- алгебра логики высказываний.

Пусть - множество натуральных чисел

- алгебра натуральных чисел относительно операций и .

Определение. Алгебра называется подалгеброй алгебры , если множество ; - ограничение операции .

Определение. Алгебраическая система - это упорядоченная тройка , где , - множество операций на ; - мно­жество отношений на .

Список литературы

Е.Е. Маренич, А.С. Маренич. Вводный курс математики. Учебно-методическое пособие. 2002

В.Е. Маренич. Журнал «Аргумент». Задачи по теории групп.

Кострикин А.И. Введение в алгебру. Ч.1 Основы алгебры. – М.: Физмат лит-ра, 2000

Кострикин А.И. Введение в алгебру. Ч.2 Основы алгебры. – М.: Физмат лит-ра, 2000

Кострикин А.И. Введение в алгебру. Ч.3 Основные структуры алгебры. – М.: Физмат лит-ра, 2000

Кострикин А.И. Сборник задач по алгебре. Изд. третье – М.: Физмат лит-ра, 2001

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений08:03:22 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
11:02:33 29 ноября 2015

Работы, похожие на Реферат: Алгебра и алгебраические системы

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150884)
Комментарии (1841)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru