Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Теория перколяции

Название: Теория перколяции
Раздел: Рефераты по физике
Тип: реферат Добавлен 00:59:06 05 июня 2011 Похожие работы
Просмотров: 1282 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Содержание

Введение

1. Теория перколяции

2. Область применения теории перколяции

2.1 Процессы гелеобразования

2.2 Применение теории перколяции для описания магнитных фазовых переходов

2.3 Применение теории перколяции к исследованию газочувствительных датчиков с перколяционной структурой

Заключение

Список литературы


Введение

Теории перколяции уже более пятидесяти лет. Ежегодно на западе публикуются сотни статей, посвященных как теоретическим вопросам перколяции, так и ее приложениям.

Теория перколяции имеет дело с образованием связанных объектов в неупорядоченных средах. С точки зрения математика, теорию перколяции следует отнести к теории вероятности в графах. С точки зрения физика – перколяция – это геометрический фазовый переход. С точки зрения программиста – широчайшее поле для разработки новых алгоритмов. С точки зрения практика – простой, но мощный инструмент, позволяющий в едином подходе решать самые разнообразные жизненные задачи.

Данная работа будет посвящена основным положениям теории перколяции. Я рассмотрю теоретические основы перколяции, приведу примеры, поясняющие явление перколяции. Также будет рассмотрены основные приложения теории перколяции.


1. Теория перколяции

Теория перколяции (протекания) — теория, описывающая возникновение бесконечных связных структур (кластеров), состоящих из отдельных элементов. Представляя среду в виде дискретной решетки, сформулируем два простейших типа задач. Можно выборочно случайным образом красить (открывать) узлы решетки, считая долю крашенных узлов основным независимым параметром и полагая два крашенных узла принадлежащими одному кластеру, если их можно соединить непрерывной цепочкой соседних крашенных узлов.

Такие вопросы, как среднее число узлов в кластере, распределение кластеров по размерам, появление бесконечного кластера и доля входящих в него крашенных узлов, составляют содержание задачи узлов. Можно также выборочно красить (открывать) связи между соседними узлами и считать, что одному кластеру принадлежат узлы, соединенные цепочками открытых связей. Тогда те же самые вопросы о среднем числе узлов в кластере и т.д. составляют содержание задачи связей. Когда все узлы (или все связи) закрыты, решетка является моделью изолятора. Когда они все открыты и по проводящим связям через открытые узлы может идти ток, то решетка моделирует металл. При каком-то критическом значении произойдет перколяционный переход, являющийся геометрическим аналогом перехода металл-изолятор.

Теория перколяции важна именно в окрестности перехода. Вдали от перехода достаточно аппроксимации эффективной среды перколяционный переход аналогичен фазовому переходу второго рода.

Явление перколяции (или протекания среды) определяется:

- Средой, в которой наблюдается это явление;

- Внешним источником, который обеспечивает протекание в этой среде;

- Способом протекания среды, который зависит от внешнего источника.

В качестве простейшего примера можно рассмотреть модель протекания (например электрического пробоя) в двумерной квадратной решетке, состоящей из узлов, которые могут быть проводящими или непроводящими. В начальный момент времени все узлы сетки являются непроводящими. Со временем источник заменяет непроводящие узлы на проводящие, и число проводящих узлов постепенно растет. При этом узлы замещаются случайным образом, то есть выбор любого из узлов для замещения является равновероятным для всей поверхности решетки.

Перколяцией называют момент появления такого состояния решетки, при котором существует хотя бы один непрерывный путь через соседние проводящие узлы от одного до противоположного края. Очевидно, что с ростом числа проводящих узлов, этот момент наступит раньше, чем вся поверхность решетки будет состоять исключительно из проводящих узлов.

Обозначим непроводящее и проводящее состояние узлов нулями и единицами соответственно. В двумерном случае среде будет соответствовать бинарная матрица. Последовательность замены нулей матрицы на единицы будет соответствовать источнику протекания.

В начальный момент времени матрица состоит полностью из непроводящих элементов:

перколяция гелеобразование газочувствительный кластер

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

При воздействии внешнего источника в матрице начинают добавляться проводящие элементы, однако поначалу их недостаточно для перколяции:


0 0 0 1
1 0 0 0
0 0 1 0
0 0 1 0

По мере увеличения числа проводящих узлов наступает такой критический момент, когда происходит перколяция, как показано ниже:

0 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

Видно, что от левой к правой границе последней матрицы имеется цепочка элементов, которая обеспечивает протекание тока по проводящим узлам (единицам), непрерывно следующим друг за другом.

Перколяция может наблюдаться как в решетках, так и других геометрических конструкциях, в том числе непрерывных, состоящих из большого числа подобных элементов или непрерывных областей соответственно, которые могут находиться в одном из двух состояний. Соответствующие математические модели называются решеточными или континуальными.

В качестве примера перколяции в непрерывной среде может выступать прохождение жидкости через объемный пористый образец (например, воды через губку из пеноообразующего материала), в котором происходит постепенное надувание пузырьков до тех пор, пока их размеров не станет достаточно для просачивания жидкости от одного края образца до другого.

Индуктивно, понятие перколяции переносится на любые конструкции или материалы, которые называются перколяционной средой, для которой должен быть определен внешний источник протекания, способ протекания и элементы (фрагменты) которой могут находиться в разных состояниях, одно из которых (первичное) не удовлетворяет данному способу прохождения, а другое удовлетворяет. Способ протекания также подразумевает собой определенную последовательность возникновения элементов или изменение фрагментов среды в нужное для протекания состояние, которое обеспечивается источником. Источник же переводит постепенно элементы или фрагменты образца из одного состояния к другому, пока не наступит момент перколяции.

Порог протекания

Совокупность элементов, по которым происходит протекание, называется перколяционным кластером. Будучи по своей природе связным случайным графом, в зависимости от конкретной реализации он может иметь различную форму. Поэтому принято характеризовать его общий размер. Порогом протекания называется количество элементов перколяционного кластера, отнесенное к общему количеству элементов рассматриваемой среды.

Ввиду случайного характера переключений состояний элементов среды, в конечной системе чётко определенного порога (размера критического кластера) не существует, а имеется так называемая критическая область значений, в которую попадают значения порога перколяции, полученные в результате различных случайных реализаций. С увеличением размеров системы область сужается в точку.


2. Область применения теории перколяции

Применения теории перколяции обширны и разнообразны. Трудно назвать область, в которой бы не применялась теория перколяции. Образование гелей, прыжковая проводимость в полупроводниках, распространение эпидемий, ядерные реакции, образование галактических структур, свойства пористых материалов – вот далеко не полный перечень разнообразных приложений теории перколяции. Не представляется возможным дать сколь-нибудь полный обзор работ по приложениям теории перколяции, поэтому остановимся на некоторых из них.

2.1 Процессы гелеобразования

Хотя именно процессы гелеобразования были первыми задачами, где был применен перколяционный подход, эта область еще далеко не исчерпана. Процесс гелеобразования заключается в слиянии молекул. Когда в системе возникают агрегаты, простирающиеся сквозь всю системы, говорят, что произошел переход золь-гель. Обычно считают, что система описывается тремя параметрами – концентрацией молекул, вероятностью образования связей между молекулами и температурой. Последний параметр влияет на вероятность образования связей. Таким образом, процесс гелеобразования можно рассматривать как смешанную задачу теории перколяции. Весьма примечательно, что этот подход используется и для описания магнитных систем. Имеется любопытное направление для развитие этого подхода. Задача гелеобразования белка альбумина имеет важное значение для медицинской диагностики.

Имеется любопытное направление для развитие этого подхода. Задача гелеобразования белка альбумина имеет важное значение для медицинской диагностики. Известно, что молекулы белка имеют вытянутую форму. При переходе раствора белка в фазу геля существенное влияние оказывает не только температура, но и наличие примесей в растворе или на поверхности самого белка. Таким образом, в смешенной задаче теории перколяции необходимо дополнительно учесть анизотропию молекул. В определенном смысле это сближает рассматриваемую задачу с задачей "иголок" и задачей Накамуры. Определение порога перколяции в смешанной задаче для анизотропных объектов – новая задача теории перколяции. Хотя для целей медицинской диагностики достаточно решить задачу для объектов одного типа, представляет интерес исследовать задачу для случаев объектов разной анизотропии и даже разной формы.

2.2 Применение теории перколяции для описания магнитных фазовых переходов

Одной из особенностей соединений на основе и является переход из антиферромагнитного в парамагнитное состояние уже при незначительном отклонении от стехиометрии. Исчезновение дальнего порядка происходит при избыточной концентрации дырок в плоскости , в то же время ближний антиферромагнитный порядок сохраняется в широкой области концентраций х вплоть до сверхпроводящей фазы.

На качественном уровне явление объясняется следующим образом. При допировании дырки появляются на атомах кислорода, что приводит к возникновению конкурирующего ферромагнитного взаимодействия между спинами и подавлению антиферромагнетизма. Резкому снижению температуры Нееля также способствует движение дырки, приводящее к разрушению антиферромагнитного порядка.

С другой стороны, количественные результаты резко расходятся со значениями порога протекания для квадратной решетки, в рамках которой удается описать фазовый переход в изоструктурных материалах. Встает задача видоизменить теорию протекания таким образом, чтобы в рамках описать фазовый переход в слое .

При описании слоя считается, что на каждый атом меди приходится одна локализованная дырка, то есть полагают, что все атомы меди магнитные. Однако, результаты зонных и кластерных расчетов показывают, что в недопированном состоянии числа заполнения меди составляют 0,5 – 0,6, а для кислорода – 0,1-0,2. На качественном уровне этот результат легко понять, анализируя результат точной диагонализации гамильтониана для кластера с периодическими граничными условиями. Основное состояние кластера представляет собой суперпозицию антиферромагнитного состояния и состояний без антиферромагнитного упорядочения на атомах меди.

Можно считать, что примерно на половине атомов меди имеется по одной дырке, а на остальных атомах имеется либо ни одной, либо две дырки. Альтернативная интерпретация: лишь половину времени дырка проводит на атомах меди. Антиферромагнитное упорядочение возникает в том случае, когда на ближайших атомах меди имеется по одной дырке. Кроме того, необходимо, чтобы на атоме кислорода между этими атомами меди либо не было дырки, либо было две дырки, чтобы исключить возникновение ферромагнитного взаимодействия. При этом не имеет значения, рассматриваем мы мгновенную конфигурацию дырок или одну или составляющих волновой функции основного состояния.

Используя терминологию теорию протекания, будем называть атомы меди с одной дыркой неблокированными узлами, а атомы кислорода с одной дыркой разорванными связями. Переход дальний ферромагнитный порядок – ближний ферромагнитный порядок в этом случае будет соответствовать порогу протекания, то есть появлению стягивающего кластера – бесконечной цепочки неблокированных узлов, соединенных неразорванными связями.

По крайней мере два момента резко отличают задачу от стандартной теории протекания: во-первых, стандартная теория предполагает наличие атомов двух сортов, магнитных и немагнитных, мы же имеем только атомы одного сорта (меди), свойства которых меняются в зависимости от локализации дырки; во-вторых, стандартная теория считает два узла связанными, если оба они не блокированы (магнитные) – задача узлов, либо, если связь между ними не разорвана – задача связей; в нашем же случае происходит как блокирование узлов, так и разрыв связей.

Таким образом, задача сводится к отысканию порога протекания на квадратной решетке для комбинирования задачи узлов и связей.

2.3 Применение теории перколяции к исследованию газочувствительных датчиков с перколяционной структурой

В последние годы широкое применение в нанотехнологии находят золь-гель процессы, не являющиеся термодинамически равновесными. На всех этапах золь-гель процессов протекают многообразные реакции, влияющие на конечный состав и структуру ксерогеля. На этапе синтеза и созревания золя возникают фрактальные агрегаты, эволюция которых зависит от состава прекурсоров, их концентрации, порядка смешивания, значения pH среды, температуры и времени реакции, состава атмосферы и т. п. Продуктами золь-гель технологии в микроэлектронике, как правило, являются слои, к которым предъявляются требования гладкости, сплошности и однородности по составу. Для газочувствительных сенсоров нового поколения больший интерес представляют технологические приемы получения пористых нанокомпозитных слоев с управляемыми и воспроизводимыми размерами пор. При этом нанокомпозиты должны содержать фазу для улучшения адгезии и одну или более фаз полупроводниковых металлооксидов n-типа электропроводности для обеспечения газочувствительности. Принцип действия полупроводниковых газовых сенсоров на основе перколяционных структур металлооксидных слоев (например, диоксида олова) заключается в изменении электрофизических свойств при адсорбции заряженных форм кислорода и десорбции продуктов их реакций с молекулами восстанавливающих газов. Из представлений физики полупроводников следует, что если поперечные размеры проводящих ветвей перколяционных нанокомпозитов будут соизмеримы со значением характеристической длины дебаевского экранирования, газочувствительность электронных датчиков возрастет на несколько порядков. Однако накопленный авторами экспериментальный материал свидетельствует о более сложной природе возникновения эффекта резкого повышения газочувствительности. Резкий рост газочувствительности может происходить на сетчатых структурах с геометрическими размерами ветвей, в несколько раз превосходящими значения длины экранирования, и зависеть от условий фракталообразования.

Ветви сетчатых структур представляют собой матрицу диоксида кремния (или смешанную матрицу диоксидов олова и кремния) с включенными в нее кристаллитами диоксида олова (что подтверждается результатами моделирования), образующими проводящий стягивающий перколяционный кластер при содержании SnO2 более 50 %. Таким образом, можно качественно объяснить повышение значения порога протекания за счет расхода части содержания SnO2 в смешанную непроводящую фазу. Однако природа формирования сетчатых структур представляется более сложной. Многочисленные эксперименты по анализу структуры слоев методами АСМ вблизи предполагаемого значения порога перколяционного перехода не позволили получить достоверных документальных подтверждений эволюции системы с образованием крупных пор по закономерностям перколяционных моделей. Иными словами, модели роста фрактальных агрегатов в системе SnO2 – SnO2 качественно описывают только начальные стадии эволюции золя.

В структурах с иерархией пор протекают сложные процессы адсорбции-десорбции, перезарядки поверхностных состояний, релаксационные явления на границах зерен и пор, катализ на поверхности слоев и в области контактов и др. Простые модельные представления в рамках моделей Ленгмюра и Брунауэра - Эммета - Теллера (БЭТ) применимы только для понимания преобладающей усредненной роли того или иного явления. Для углубления изучения физических особенностей механизмов газочувствительности потребовалось создание специальной лабораторной установки, обеспечивающей возможность регистрации временных зависимостей изменения аналитического сигнала при разных температурах в присутствии и отсутствии восстанавливающих газов заданной концентрации. Создание экспериментальной установки позволяло автоматически снимать и обрабатывать 120 измерений в минуту в рабочем диапазоне температур 20 – 400 ºС.

Для структур с сетчатым перколяционным строением были выявлены новые эффекты, наблюдающиеся при экспонировании в атмосфере восстанавливающих газов пористых наноструктур на основе металлооксидов.

Из предложенной модели газочувствительных структур с иерархией пор следует, что для увеличения чувствительности адсорбционных полупроводниковых сенсорных слоев принципиально возможно обеспечить относительно высокое сопротивление образца на воздухе и относительно низкое сопротивление пленочных наноструктур в присутствии газа-реагента. Практическое техническое решение может быть реализовано путем создания в зернах системы наноразмерных пор высокой плотности распределения, обеспечивающей эффективную модуляцию процессов токопротекания в перколяционных сетчатых структурах. Это было реализовано с помощью целенаправленного введения оксида индия в систему на основе диоксидов олова и кремния.


Заключение

Теория перколяции довольно новое и не до конца изученное явления. Каждый год в области теории перколяции делаются открытия, пишутся алгоритмы, публикуются работы.

Теория перколяции привлекает к себе внимание различных специалистов по ряду причин:

- Легкие и элегантные формулировки задач теории перколяции сочетаются с трудностью их решения;

- Решение задач перколяции требует объединения новых идей из геометрии, анализа и дискретной математики;

- Физическая интуиция бывает весьма плодотворна при решении задач перколяции;

- Техника, развитая для теории перколяции, имеет многочисленные приложения в других задачах о случайных процессах;

- Теория перколяции дает ключ к пониманию иных физических процессов.


Список литературы

1. Тарасевич Ю.Ю. Перколяция: теория, приложения, алгоритмы. – М.: УРСС, 2002.

2. Шабалин В.Н., Шатохина С.Н. Морфология биологических жидкостей человека. – М.: Хризостом, 2001. – 340 с.: ил.

3. Физические свойства высокотемпературных сверхпроводников/ Под. Ред. Д. М. Гинзберга.- М.: Мир, 1990.

4. Плакида Н. М. Высокотемпературные сверхпроводники. – М.: Международная программа образования, 1996.

5. Физические свойства высокотемпературных сверхпроводников/ Под. Ред. Д. М. Гинзберга.- М.: Мир, 1990.

6. Просандеев С.А., Тарасевич Ю.Ю. Влияние корреляционных эффектов на зонную структуру, низкоэнергетические электронные возбуждения и функции откликов в слоистых оксидах меди. // УФЖ 36(3), 434-440 (1991).

7. Ельсин В.Ф., Кашурников В.А., Опёнов Л.А. Подливаев А.И. Энергия связи электронов или дырок в кластерах Cu – O: точнаядиагонализация гамильтониана Эмери. // ЖЭТФ 99(1), 237-248 (1991).

8. Мошников В.А. Сетчатые газочувствительные нанокомпоненты на основе диоксидов олова и кремния. – Рязань, "Вестник РГГТУ", - 2007.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:48:58 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
10:52:52 29 ноября 2015

Работы, похожие на Реферат: Теория перколяции
Изучение кластеров и их свойств в области химии
Министерство образования и науки Украины Реферат по теме: "Изучение кластеров и их свойств в области химии" Донецк 2008 Введение Эта работа посвящена ...
В таких исследованиях - они относятся главным образом к кластерам в газовой среде - экспериментальные устройства включают в себя сопряженные узлы генерации, выделения (если нужно ...
К явлениям образования кластеров в фазовых переходах близки уже упоминавшиеся предпереходные явления; здесь до возникновения новой фазы дело не доходит, и кластеры остаются как бы ...
Раздел: Рефераты по химии
Тип: реферат Просмотров: 662 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Общая и неорганическая химия
Квантово-механическая модель атома. Квантовые числа. Атомные орбитали. Порядок заполнения орбиталей электронами Теория строения атома основана на ...
В узлах кристаллической решетки металлов находятся свободные атомы, положительно заряженные коны, а часть валентных электронов, свободно перемещаясь в объеме кристаллической ...
Например, в твердом состоянии роданид состава Pb(CNS)2- 4KCNS содержит в узлах кристаллической решетки сложные ионы [Pb(CNS)6]4-, которые не разрушаются и при его растворении в ...
Раздел: Рефераты по химии
Тип: учебное пособие Просмотров: 14350 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Золь-гель метод
... образования "Гомельский государственный университет им. Ф. Скорины" Химический факультет Курсовая работа Золь-гель метод Исполнитель: Студентка ...
Золь-гель процесс, в данном случае, - краткое обозначение эволюции коллоидно-кремнеземной системы при фазовых переходах золь гель монолитное твердое тело, в результате которого ...
Были изучены фазовые и структурные превращения коллоид кремнеземной системы в ходе синтеза геля и стеклования в условиях добавления в качестве наполнителей аэросилов, состоящих из ...
Раздел: Рефераты по химии
Тип: курсовая работа Просмотров: 597 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Основные вопросы, объясняющие материаловедение
Введение Материаловедение - это наука, изучающая строение и свойства металлов и устанавливает связь между составом, структурой и свойствами ...
В узлах кристаллической решетки располагаются атомы.
1.Простая решетка представляется в виде куба, в узлах которой располагаются атомы.
Раздел: Промышленность, производство
Тип: шпаргалка Просмотров: 5861 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Фуллерены
Курсовая работа по "Материалам и компонентам электронной техники" на тему: Фуллерены Выполнил: Neur0_13[z_c0m] студент группы xxxx/x СПбГПУ, 2004 г ...
При интеркаляции примеси вводятся в пустоты уристаллической решетки фуллерита, а эндоэдральные фуллерены образуются при внедрении атомов различного сорта внутрь кластера Сn.
При охлаждении фуллерита в области температур 250 - 260 К сходит фазовый переход первого рода: кристалл переходит в простую примитивную кубическую решетку (ПК) с 4 молекулами
Раздел: Рефераты по физике
Тип: реферат Просмотров: 5707 Комментариев: 3 Похожие работы
Оценило: 4 человек Средний балл: 3.8 Оценка: неизвестно     Скачать
Исследование твердых электролитов
Введение Ионика твердого тела как область науки, лежащая на пересечении физики и химии твердого тела, электроники и электрохимии, кристаллографии и ...
Следует заметить, что "золь-гель химия" алкоксидов переходных металлов более сложна, так как атомы переходных металлов имеют не только высокую электрофильность, но и проявляют ...
Большинство этих твёрдых растворов - ионные кристаллы: в узлах кристаллической решётки находятся не нейтральные атомы, а заряженные ионы.
Раздел: Рефераты по химии
Тип: дипломная работа Просмотров: 2745 Комментариев: 2 Похожие работы
Оценило: 1 человек Средний балл: 4 Оценка: неизвестно     Скачать
Основы химии
Глава 1. Общие химические и экологические закономерности. С чего начинается химия? Cложный ли это вопрос? На него каждый ответит по-своему. В середней ...
В узлах атомной решетки располагаются (находятся) нейтральные атомы.
В растворах замещения атомы растворяемого вещества замещают часть атомов растворителя в узлах решетки.
Раздел: Рефераты по химии
Тип: реферат Просмотров: 5709 Комментариев: 3 Похожие работы
Оценило: 7 человек Средний балл: 2.6 Оценка: 3     Скачать
Органические полупроводники
Содержание Введение 1 Полупроводниковые материалы 1.1 Общие сведения о полупроводниках 1.2 Классификация полупроводников 1.3 Собственная проводимость ...
Это означает, что электрон нейтрализует избы точный положительный заряд, имеющийся в окрестности дырки, и теряет свободу передвижения до тех пор, пока снова не получит от ...
Этот вид проводимости возникает, если некоторые атомы данного полупроводника заменить в узлах кристаллической решетки атома ми, валентность которых отличается на единицу от ...
Раздел: Рефераты по физике
Тип: курсовая работа Просмотров: 3673 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Межпредметные связи в курсе школьного предмета химии на предмете ...
Приложение 1 Конкретные примеры о методах реализации межпредметных связей. 1. Вопросы межпредметного содержания: а) Вспомните (из курса географии ...
При химическом превращении, т.е. в период протекания химической реакции происходит перестройка электронных структур атомов, ионов, молекул.
SiO2 тугоплавок, т.к. в узлах кристаллической решетки содержатся атомы Si и O, которые связаны прочными ковалентными связями.
Раздел: Рефераты по химии
Тип: реферат Просмотров: 8763 Комментариев: 4 Похожие работы
Оценило: 2 человек Средний балл: 4 Оценка: неизвестно     Скачать
Лекции - преподаватель Григорьев Владимир Калистратович
ЛЕКЦИЯ 1 Исторический обзор Что такое электроника? Это передача, приём, обработка и хранение информации с помощью электрических зарядов. Это наука ...
На втором этапе делают эпитаксию - наращивают эпитаксиальный слой с низкой концентрацией электронов (электронов больше, чем дырок).
Эти атомы жёстко закреплены в узлах кристаллической решётки, и не могут двигаться, т.е. не переносят ток.
Раздел: Рефераты по схемотехнике
Тип: реферат Просмотров: 1083 Комментариев: 2 Похожие работы
Оценило: 3 человек Средний балл: 3.3 Оценка: неизвестно     Скачать

Все работы, похожие на Реферат: Теория перколяции (468)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150372)
Комментарии (1830)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru