Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Получение и описание физико-химических свойств синтетических биодеградируемых полимеров

Название: Получение и описание физико-химических свойств синтетических биодеградируемых полимеров
Раздел: Рефераты по химии
Тип: реферат Добавлен 07:42:53 18 мая 2011 Похожие работы
Просмотров: 1931 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Министерство образования и науки Российской Федерации

Государственное образовательное учреждение

Высшего профессионального образования

Тверской государственный технический университет

Кафедра Биотехнология и химия

Реферат

по биофизической химии

Получение и описание физико-химических свойств синтетических биодеградируемых полимеров

Тверь 2010


Содержание

Введение

1. Характеристика биодеградируемых полимеров

2. Свойства биодеградируемых полимеров

3. Получение синтетических биодеградируемых полимеров

4. Использование биодеградируемых полимеров

Заключение

Список использованных источников


Введение

Биодеградируемыми полимерами называются полимерные материалы, разрушающиеся в результате естественных природных (микробиологических и биохимических) процессов. Полимер, как правило, считается биоразлагаемым, если вся его масса разлагается в почве или воде за период в шесть месяцев. Во многих случаях продуктами распада являются углекислый газ и вода. Любые другие продукты разложения или остатки должны исследоваться на наличие токсичных веществ и безопасность. [1]

Они могут производиться из возобновляемых источников, или же их можно получать из нефтехимических сырьевых материалов. Они могут использоваться сами по себе или же в сочетании с другими пластмассовыми смолами и добавками.

Биоразлагаемые полимеры можно перерабатывать с помощью большинства стандартных технологий производства пластмасс, включая горячее формование, экструзию, литьевое и выдувное формование. [2]

Существует две основных сферы жизнедеятельности человека, которые остро нуждаются в применении искусственных биодеградируемых полимеров, - это охрана окружающей среды и медицина.

В настоящее время для защиты окружающей среды от пластмассовых отходов активно разрабатываются два основных подхода: захоронение (хранение отходов на свалках) и утилизация (сжигание; пиролиз; рециклизация - переработка). Однако как сжигание, так и пиролиз отходов тары и упаковки и. вообще пластмасс кардинально, не улучшают экологическую обстановку. Но многие преимущества синтетических полимеров - их разнообразие, стабильность, способность образовывать пространственные сетки — затрудняют вторичную переработку.

Радикальным решением проблемы «полимерного мусора» по мнению специалистов, является создание и освоение широкой гаммы полимеров, способных при соответствующих условиях биодеградировать, на безвредные для живой и не живой природы компоненты. [1]


1 Характеристика биодеградируемых полимеров

Способность полимеров разлагаться и усваиваться микроорганизмами зависит от ряда их структурных характеристик. Наиболее важными являются химическая природа полимера, молекулярная масса, разветвленность макроцепи (наличие и природа боковых групп), надмолекулярная структура.

Синтетические полимеры, содержащие связи, которые легко подвергаются гидролизу, обладают высокой способностью к биодеструкции. Присутствие заместителей в полимерной цепи часто способствует повышению биодеструкции. Последняя зависит также от степени замещения цепи и длины ее участков между функциональными группами, гибкости макромолекул.

Важным фактором, который определяет стойкость полимера к биоразложению, является величина его молекул. В то время как мономеры или олигомеры могут быть поражены микроорганизмами и служат для них источником углерода, полимеры с большой молекулярной массой устойчивы к действию микроорганизмов. Биодеструкцию большинства технических полимеров, как правило, инициируют процессами небиологического характера (термическое и фотоокисление, термолиз, механическая деградация и т. п.).

Упомянутые деградационные процессы приводят к снижению молекулярной массы полимера. При этом возникают низкомолекулярные биоассимилируемые фрагменты, имеющие на концах цепи гидроксильные, карбонильные или карбоксильные группы.

Не менее значимым фактором, оказывающим влияние на биодеградацию, является надмолекулярная структура синтетических полимеров. Компактное расположение структурных фрагментов полукристаллических и кристаллических полимеров ограничивает их набухание в воде и препятствует проникновению ферментов в полимерную матрицу. Это затрудняет воздействие ферментов не только на главную углеродную цепь полимера, но и на биоразрушаемые части цепи. Аморфная часть полимера всегда менее устойчива к биодеструкции, чем кристаллическая. [3]

Биоразлагаемые полимеры классифицируют по виду сырья для их получения:

а) сырье возобновляемое животного происхождения:

1)коллаген;

2)эластин;

3)воски;

4)алифатические полиэфиры;

5)кератин;

6)фиброин;

7)эмульсия.

б) сырье возобновляемое растительного происхождения:

1)крахмал;

2) целлюлоза;

3)агар;

4) пектин.

в) сырье невозобновляемое нефтехимического происхождения:

1) полиуретаны;

2)полиэстрамиды;

3)полиэфирамиды;

4)ароматические полиэфиры, например, полимолочная кислота;

5) алифатическо-ароматический сополиэфиры;

г) сырье смешанное:

1) полиэфиры.

2. Свойства биодеградируемых полимеров

Крахмал содержит гидроксильные группы, которые притягивают воду, из-за этого происходит преждевременное разложение полимера. Но если часть этих гидроксильных групп заменить другими, такими как эфирные или сложноэфирные, то воде будет не так легко воздействовать на полимер. Дополнительная химическая обработка позволяет создать дополнительные связи между различными частями полимера крахмала для того, чтобы увеличить его теплостойкость, устойчивость к воздействию кислот и срезающему усилию.

В результате такой обработки образуется модифицированный крахмал, который разлагается в окружающей среде, но обладает свойствами коммерчески полезного термопласта. Модифицированный крахмал можно производить на том же оборудовании, что и обыкновенную пластмассу, его можно окрашивать и на него можно наносить печать с использованием всех обычных технологий. Этот материал антистатичен по своей природе. Физические свойства модифицированного крахмала, в целом, уступают свойством смол, полученных нефтехимическим путем, которым он составляет конкуренцию – полиэтилену низкого и высокого давления, и полипропилену. Разлагается при 30о С в течении двух месяцев.

Целлюлоза обладает высокой механической прочностью, не растворяется в воде и органических растворителях, не плавится. Под воздействием кислот хорошо гидролизуется.

Полимолочная кислота - линейный алифатический полиэфир, получается с помощью полимеризации молочной кислоты, которая изготавливается на основе ферментации сахаров, получаемых из кукурузы или иной биомассы. Разложение PLA осуществляется в два этапа. Сначала эфирные группы постепенно подвергают гидролизу водой для формирования молочной кислоты и прочих небольших молекул, затем их разлагают с помощью микробов в определенной среде. Полимолочная кислота способна полностью разлагаться в течение 45 дней при условии создания соответствующей структуры компостирования.Поликапролактон относится к классу синтетических алифатических полиэфиров. Обладает высокой механической прочностью и хорошими барьерными свойствами по отношению к воде и жирам. Низкая температура плавления (50о С). Процесс биоразложения происходит в течение 60 дней при контакте с бактериями и грибками.

3. Получение синтетических биодеградируемых полимеров

биодеградируемый полимер биохимический микробиологический

В настоящее время в мире основные работы ведутся по созданию новых полимеров (в основном полиэфиров и материалов на основе сырья биогенного происхождения). Направление по приданию биодеградируемых свойств крупнотоннажным промышленным полимерам путем введения в них различных добавок является актуальным и перспективным.

Создание материалов из биодеградируемых полимеров необходимо, прежде всего, для решения глобальной экологической проблемы утилизации отходов, в частности переработки пластика, который является основным упаковочным материалом.

Интенсивно ведутся работы по созданию и исследованию биоразлагаемых (непосредственно под воздействием микроорганизмов или подвергающихся быстрой эрозии под воздействием окружающей среды, с последующей деградацией микроорганизмами) полимеров. В развитых странах большая часть одноразового упаковочного материала уже производится из биоразлагаемых материалов. Перспективно использование нанокомпозитов на основе биодеградируемых полимеров и наноглин, которые обладают лучшими механическими и термическими свойствами, а также быстрее разлагаются за счет уменьшения степени кристалличности полимера. В процессе биодеградации макромолекулы сначала распадаются на небольшие участки (олигомеры), которые затем перерабатываются бактериями. Во многих случаях продуктами распада является углекислый газ и вода.

В настоящее время производится множество биоразлагаемых материалов: на основе сополимеров полигидроксибутирата и полигидроксивалерата, гидроксикарбоновой кислоты и ее лактида, ацетата целлюлозы с различными добавками и пластификаторами, полиамида-6 с добавками природного происхождения и синтетических биоразлагаемых олигомеров. В США широко распространены биоразлагаемые на открытом воздухе упаковки TONE на основе капролактама. [1]

Известны различные технологические подходы к созданию биоразлагаемых полимеров. Среди них следует выделить следующие направления:

1) селекция специальных штаммов микроорганизмов, способных осуществлять деструкцию полимеров. Данное направление увенчалось успехом только в отношении поливинилового спирта. Японские ученые выделили из почвы бактерии Pseudomonas SP, которые вырабатывают фермент, расщепляющий поливиниловый спирт. После разложения макроцепи ее фрагменты полностью усваиваются бактериями. Бактерии Pseudomonas добавляют к активному илу на водоочистных сооружениях для более полной очистки сточных вод от этого полимера;

2) синтез биоразлагаемых полимеров методами биотехнологии.

Получен микробный полиоксибутират, который по своим пластическим свойствам близок к классическим полимерам – полиэтилену и полипропилену. Полиоксибутират и изделия из него легко поддаются разложению под действием микроорганизмов, а также ферментов плазмы животных тканей. Этот полимер применяют не только в качестве упаковочного материала, отходы которого разрушаются естественной почвенной микрофлорой до мономеров, но и используют в хирургии и фармакологии. Английская фирма ICI создала новые полимерные материалы, получаемые с помощью бактерий на натуральных субстратах: сахаре, этаноле, смеси газов (СО2 и Н2). Синтезируемый бактериями полимер – поли-3-гидроксибутират – относится к термопластам и по своим физическим свойствам аналогичен полипропилену. Однако он не устойчив к действию растворителей и имеет низкую теплостойкость. В поли-3-гидроксибутират вводят другой продукт бактериального синтеза –поли-3-гидроксивалериановую кислоту и получают полимерную композицию BiopolTM, которая полностью разрушается микроорганизмами в течение нескольких недель;

3) синтез биоразлагаемых полимерных материалов, имеющих химическую структуру, сходную со структурой природных полимеров.

Примером такого синтеза является поддающийся биодеструкции сложный полиэфир алифатического ряда, имеющий химическую структуру, аналогичную структуре полиоксиацетобутирата целлюлозы. Синтетически получены полимеры – аналог лигнина (мето-ксиоксистирол), биодеструктируемый полиамид, разрушающийся микроорганизмами сложный полиэфир, в состав которого входят молочная и фенилмолочная кислоты.

Создание композиций, содержащих кроме высокомолекулярной основы органические наполнители (крахмал, целлюлозу, амилозу, амилопектин, декстрин и др.), являющиеся питательной средой для микроорганизмов.

Наиболее дешевым методом получения композиций «полимер-наполнитель» является прямое смешивание компонентов. В таком случае наполнитель присутствует в пластике в виде конгломератов размером 10-100 мкм. Величина макрочастиц определяется энергией межфазного взаимодействия и сдвиговым напряжением в процессе экструзии. Полученный из такой смеси материал является частично биоразлагаемым, так как матрица синтетического полимера в лучшем случае распадается на кусочки.

При смешивании наполнителя с синтетическим полимером на микроуровне (размер частиц менее 10 мкм) компоненты смеси образуют взаимопроникающую сетчатую структуру, которая обеспечивает наполненному полимеру эффект дополнительной деструкции. Как известно, наполнитель может скапливаться в менее упорядоченных областях полимера. Кроме того, плотность упаковки макромолекул в граничных слоях системы «полимер-наполнитель» приблизительно вдвое меньше, чем в остальном объеме неупорядоченной фазы полимера. Поэтому при уничтожении наполнителя бактериями облегчается доступ микроорганизмов к менее стойкой по отношению к биодеструкции части полимера. Биоразлагаемые материалы с активным растительным наполнителем впервые появились на упаковочном рынке США, Италии и Германии в 70-80-е гг. ХХ в. Это были композиции крахмала с различными синтетическими полимерами. По сравнению с термопластами на основе пластифицированного крахмала они удачно сочетали технологичность и высокие эксплуатационные характеристики, присущие синтетическому компоненту, со способностью к биодеструкции, обусловленной наличием в их составе природного полимера (крахмала).

Чаще всего крахмалом модифицировали полиэтилен – пластик, наиболее востребованный не только в индустрии упаковки, но имеющий широкий диапазон применения в пищевой и легкой промышленности, медицине, сельском хозяйстве, строительстве и других отраслях. Для получения термопластичных смесей «полимер-крахмал» полисахарид обычно пластифицировали глицерином и водой. Смешивание компонентов осуществлялось в экструдере при температуре 150О С, обеспечивающей хорошую желатинизацию полисахарида и образование двухфазной смеси. Биоразложение композиционного материала, полученного по такой технологии, начиналось с поверхности пленки, обогащенной крахмалом. Для интенсификации биодеструкции в состав композиций вводили фотосенсибилизаторы или самоокисляющиеся добавки, вызывающие деструкцию полимерной цепи с образованием участков, достаточно малых для того, чтобы быть усвоенными микроорганизмами.

Биоразлагаемые полимеры можно получать с помощью молочной кислоты - химического соединения, которое есть в квашеной капусте. Оно образуется при действии биологических катализаторов (ферментов) на углеводы, содержащиеся в растительной биомассе в ряде промышленных и сельскохозяйственных процессов. Особое значение этот простой химический исходный компонент приобрел в последнее время, так как с его помощью можно получать полилактид - полимер молочной кислоты, легко разлагаемый бактериями, а потому безвредный для экологии.

Прежде индустрия подобных полимеров развивалась слабо, потому что молочную кислоту из исходного сырья - растительных углеводов - получали с помощью микроорганизмов и вырабатываемых ими ферментов. Такой процесс идет медленно, он требует очень строгого поддержания условий, а также значительных материальных затрат и технологических усилий по отделению и очистке конечного продукта от других продуктов метаболизма микробов.

Группа ученых во главе с Эсбеном Таарнингом (Esben Taarning) из Технологического университета Дании выяснила, что для этих же целей можно использовать и довольно простой неорганический катализатор на основе так называемых цеолитов - неорганических веществ на основе кремния и алюминия (алюмосиликатов), обладающих каркасной кристаллической решеткой с относительно большими пустотами в этих каркасах, где могут протекать специфические химические реакции.

Создание композиций, содержащих кроме высокомолекулярной основы органические наполнители (крахмал, целлюлозу, амилозу, амилопектин, декстрин и др.), являющиеся питательной средой для микроорганизмов.

Биоразлагаемые материалы с активным растительным наполнителем впервые появились на упаковочном рынке США, Италии и Германии в 70-80-е гг. ХХ в. Это были композиции крахмала с различными синтетическими полимерами. По сравнению с термопластами на основе пластифицированного крахмала они удачно сочетали технологичность и высокие эксплуатационные характеристики, присущие синтетическому компоненту, со способностью к биодеструкции, обусловленной наличием в их составе природного полимера (крахмала).

Чаще всего крахмалом модифицировали полиэтилен – пластик, наиболее востребованный не только в индустрии упаковки, но имеющий широкий диапазон применения в пищевой и легкой промышленности, медицине, сельском хозяйстве, строительстве и других отраслях. Для получения термопластичных смесей «полимер-крахмал» полисахарид обычно пластифицировали глицерином и водой. Биоразложение композиционного материала, полученного по такой технологии, начиналось с поверхности пленки, обогащенной крахмалом. Для интенсификации биодеструкции в состав композиций вводили фотосенсибилизаторы или самоокисляющиеся добавки, вызывающие деструкцию полимерной цепи с образованием участков, достаточно малых для того, чтобы быть усвоенными микроорганизмами.

Крахмал плохо совместим с неполярным полиэтиленом, поэтому современные исследования по улучшению сродства природного и синтетического полимеров проводятся в двух направлениях:

1) получение смесей крахмала с сополимерами этилена или другими, более полярными полимерами;

2) модифицирование крахмалов с целью повышения их совместимости с полиэтиленом.

Наиболее часто в смесях с крахмалом используют сополимеры этилена с винилацетатом (СЭВА) или продукты омыления ацетатных групп в таких сополимерах. Изучены также композиции крахмала с сополимером этилена и пропилена – полистиролом. [2]

4. Использование биодеградируемыхполимеров

Биоразлагаемые полимеры, особенно те, которые производятся из биологического сырья, составляют очень небольшую долю мирового рынка пластмасс.

К числу основных применений биоразлагаемых пластмасс относится упаковка пищевых продуктов. Контейнеры, пленки и пеноматериалы, изготовленные из таких полимеров, используются для упаковки мяса, молочных продуктов, выпечки и других продуктов. Другим наиболее распространенным применением являются одноразовые бутылки и стаканчики для воды, молока, соков и прочих напитков, тарелки, миски и поддоны. Еще одним рынком сбыта для таких материалов является производство мешков для сбора и компостирования пищевых отходов, а также пакетов для супермаркетов. Развивающимся применением этих полимеров является рынок сельскохозяйственных пленок. [3]

Биоразлагаемые полимеры, использующиеся в медицине, гидролизуются в организме при помощи различных ферментов. Широко используемым в медицине биоразлагаемым полимером является, например, шовный материал.

Очень перспективно использование биоразлагаемых полимеров для контролируемой доставки лекарств, а также в качестве имплантатов, которые могут постепенно заменяться в организме костной или другой живой тканью. Одними из первых в тканевой инженерии стали применяться биодеградируемые синтетические биоматериалы на основе полимеров органических кислот, например молочной (PLA, полилактат) и гликолевой (PGA, полигликолид). При этом в состав полимера может входить как один тип кислотного остатка, так и их сочетания в различных пропорциях. Матрицы на основе органических кислот легли в основу создания таких органов и тканей, как кожа, кость, хрящ, сухожилие, мышцы (поперечно-полосатая, гладкая и сердечная), тонкая кишка и др. Особое место среди материалов для биоматриц-носителей занимают коллаген, хитозан и альгинат. Коллаген практически не имеет антигенных свойств. Альгинат – полисахарид из морских водорослей. Хитозан – азотсодержащий полисахарид, который получают из хитиновых панцирей ракообразных и моллюсков. Комбинированный по составу препарат – коллагеново-хитозановый комплекс разрешен Минздравом РФ в качестве перевязочного, ранозаживляющего средства и уже используется в клинической практике в хирургии и стоматологии. [2]


Заключение

Подводя итог, можно сделать вывод, что способность полимерных материалов к биодеструкции обусловлена главным образом их химическим составом, структурой и свойствами макромолекул. Вместе с тем на устойчивость полимеров упаковочного назначения к биологическому разложению большое влияние оказывают некоторые макроструктурные характеристики (величина пористости, равномерность распределения добавок в полимерной массе, особенности обработки поверхности изделий и т. П.), а также технологические параметры изготовления материала и его переработки в упаковку.

Наиболее доступны и находят все большее практическое применение в индустрии упаковки материалы на основе крахмала или его смесей с синтетическими полимерами, свойства которых, в том числе и способность к биоразложению, зависят от совместимости компонентов и структуры получаемых систем. Однако термодинамика и энергетика взаимодействия компонентов в смесях крахмала с синтетическими полимерами и структура таких систем мало изучены.

Цель новейших разработок в области создания биоразлагаемых пластмасс упаковочного назначения состоит в том, чтобы установить общие закономерности в подборе компонентов и технологических параметров при изготовлении материалов, сочетающих высокий уровень эксплуатационных характеристик (прочность, низкую газопроницаемость, экологическую безопасность, хорошую формуемость и др.) со способностью к биоразложению, и научиться регулировать процессы их деструкции для обеспечения быстрой и безопасной деградации упаковки по окончании срока ее службы.

В заключение следует отметить, что интенсификация исследований в области создания biodegradable polymer важна не только для дальнейшего успешного развития рынка биоразлагаемой полимерной упаковки. Это одно из перспективных направлений решения глобальной экологической проблемы, связанной с загрязнением окружающей среды отходами полимерных материалов. [2]

Список использованных источников

1. Фомин В.А., Гузеев В.В. Биоразлагаемые полимеры, состояние и перспективы использования. // Пластические массы, 2001, №2, с.42.

2. http://www.newchemistry.ru/letter.php?n_id=1164&cat_id=&sword=

3. http://www.betech.ru/apress/art/7.html

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:38:35 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
10:46:29 29 ноября 2015

Работы, похожие на Реферат: Получение и описание физико-химических свойств синтетических биодеградируемых полимеров
Получение и исследование биоактивных композиций на основе полиэтилена ...
Получение и исследование биоактивных композиций на основе полиэтилена высокой плотности и крахмала Содержание Введение Глава I. Литературный обзор 1.1 ...
В качестве источника питательной среды для микроорганизмов в композициях, состоящих из промышленных полимеров, широко применяемых в быту, в особенности для тары и упаковки, как ...
Как мы видим, несмотря на то, что сам крахмал биоразлагаем, все же для ускорения биодеградации и получения изделий с заданными свойствами в композицию наряду с крахмалом вводят и ...
Раздел: Промышленность, производство
Тип: дипломная работа Просмотров: 3080 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
... школьников при изучении темы "Полимеры" в курсе химии
ПЕРСПЕКТИВЫ РАЗВИТИЯ ЭКОЛОГИЧЕСКОГО СОЗНАНИЯ ШКОЛЬНИКОВ ПРИ ИЗУЧЕНИИ ТЕМЫ: "ПОЛИМЕРЫ" В КУРСЕ ХИМИИ СОДЕРЖАНИЕ Введение Глава 1. Вопросы ...
Первый в мире биоразлагаемый полимер Биопол (Biopol) - полигидроксиолконоаты на основе 3-гидроксивалериановой кислот - был получен в процессе ферментации полисахаридов (сахара ...
Здесь нам хотелось бы остановиться на такой важной проблеме как производство и применение биоразлагаемых пластиков на основе синтетических полимеров, рассмотренных выше и природных ...
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 6487 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Развитие, становление и основные аспекты фармации
РАЗВИТИЕ, СТАНОВЛЕНИЕ И ОСНОВНЫЕ АСПЕКТЫ ФАРМАЦИИ Для ветеринарного провизора необходимы знания, с помощью которых можно контролировать качество ...
Сульфаты под действием минеральных кислот разлагаются на воду и диоксид серы, имеющий характерный резкий запах.
Наиболее часто в качестве лекарств используют следующие аминокислоты, их производные или синтетические аналоги: аминалон, кислоту аминокапроновую, фени-бут, кислоту глутаминовую ...
Раздел: Рефераты по медицине
Тип: книга Просмотров: 20468 Комментариев: 2 Похожие работы
Оценило: 1 человек Средний балл: 4 Оценка: неизвестно     Скачать
Программа для поступающих в вузы (ответы)
Программа по химии для абитуриентов Предмет химии. Явления химические и физические. Атомно-молекулярное учение. Атомы. Молекулы. Молекулярное и ...
Сульфат аммония содержит 21,2% азота и получается поглощением серной кислотой аммиака газа коксовых печей, нейтрализацией серной кислоты синтетическим аммиаком, обработка гипса ...
В зависимости от состава основной цепи различают полимеры карбоцепные (полимерная цепь состоит только из атомов углерода) и гетероцепные (в состав полимерной цепи входят атомы и др ...
Раздел: Рефераты по химии
Тип: реферат Просмотров: 7420 Комментариев: 2 Похожие работы
Оценило: 3 человек Средний балл: 4.7 Оценка: неизвестно     Скачать
Роль упаковки в реализации молочной продукции
Содержание Введение Глава 1. Общая характеристика упаковок 1.1 Сущность и типы упаковок 1.2 Основные качества 1.3 Общая характеристика упаковок 1.4 ...
Таким образом, упаковка обеспечивает сохранность качества продукции, увеличение сроков ее хранения, защиту от инфицирования микроорганизмами, воздействие солнечного света и т.п ...
При возможности взаимозаменяемости тары, например упаковка в стеклянную или полимерную бутылку, картонный или деревянный ящик, полимерный или тканевый мешок, нужно рассчитывать ...
Раздел: Рефераты по маркетингу
Тип: курсовая работа Просмотров: 3466 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Упаковка как фактор сохранности и конкурентоспособности
Содержание Введение 1. Теоретические аспекты упаковки как фактора сохранности и конкурентоспособности потребительских товаров. 1.1 Роль упаковки и ...
Отдельные виды мягкой упаковки, в частности полимерную, используют для герметического упаковывания путем термосклеивания, что обеспечивает дополнительные преимущества такой ...
Изготовленные на их основе упаковки легко разлагаются под воздействием солнечного света, тепла, воздуха и микроорганизмов почвы до низкомолекулярных веществ (вода, углекислый газ ...
Раздел: Рефераты по маркетингу
Тип: курсовая работа Просмотров: 9597 Комментариев: 1 Похожие работы
Оценило: 1 человек Средний балл: 4 Оценка: неизвестно     Скачать
Микроорганизмы, выделенные из различных природных жиров
АННОТАЦИЯ ИЗУЧЕНИЕ СПОСОБНОСТИ МИКРООРГАНИЗМОВ ДЕСТРУКТИРОВАТЬ ЖИРОВЫЕ ВЕЩЕСТВА РАЗЛИЧНОЙ ХИМИЧЕСКОЙ ПРИРОДЫ Выпускная квалификационная работа ...
Подготовленные таким образом культуры инкубируют в термостате 24 ч при температуре (37=5)°С, по окончании чего в пробирки с микроорганизмами вводят 5 см3 соответствующей жидкой ...
При пикелевании с использованием кисломолочных бактерий, выделенных из кефирной грибковой кисломолочной композиции и курунговой кисломолочной композиции, культивируемых на ...
Раздел: Рефераты по биологии
Тип: дипломная работа Просмотров: 2881 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Микробиология и иммунология
31. Понятие о химиотерапии и антибиотиках. Механизм действия антибиотиков Химиотерапия - специфическое антимикробное, антипаразитарное лечение при ...
Для многих микроорганизмов таксономическим признаком служит способность разлагать определенные углеводы с образованием кислот и газообразных продуктов.
Механизм действия сульфаниламидов (сульфонамидов) на микроорганизмы был открыт Р.Вудсом, установившим, что сульфаниламиды являются структурными аналогами парааминобензойной кислоты ...
Раздел: Рефераты по медицине
Тип: шпаргалка Просмотров: 14506 Комментариев: 2 Похожие работы
Оценило: 2 человек Средний балл: 4.5 Оценка: неизвестно     Скачать
Понятие о пищевых добавках и их характеристика
I. ПОНЯТИЕ О ПИЩЕВЫХ ДОБАВКАХ И ИХ ХАРАКТЕРИСТИКА В соответствии с действующим в нашей стране санитарным законодательством под термином "пищевые ...
Некоторые консерванты могут разлагаться микроорганизмами.
Так, метилпарабен разлагается бактериями вида Pseudomonas aeruginosa, а сорбиновая кислота - грибами рода Penicillium и др.
Раздел: Рефераты по кулинарии
Тип: курсовая работа Просмотров: 5055 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Пищевые отравления. Токсикоинфекции
Уральская государственная академия Курсовая работа на тему: "Пищевые отравления. Токсикоинфекции" Троицк, 2008 Содержание Введение Краткий ...
Механизм патогенности у бактерий данного рода такой же, как и у всех микроорганизмов семейства энтеробактерий (сальмонелл, кишечной палочки и т.д.). При экспериментальном введении ...
Восстанавливают нитраты, образуют Н2S, разлагают глюкозу, ксилозу, сахарозу, мальтозу, глицерин, маннит с выделением кислоты; уреаза-положительны; крахмал не гидролизуют; индол не ...
Раздел: Рефераты по медицине
Тип: учебное пособие Просмотров: 7389 Комментариев: 2 Похожие работы
Оценило: 2 человек Средний балл: 4.5 Оценка: неизвестно     Скачать

Все работы, похожие на Реферат: Получение и описание физико-химических свойств синтетических биодеградируемых полимеров (2073)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150579)
Комментарии (1836)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru