Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Курсовая работа: Преобразование сигналов и помех радиотехническими цепями

Название: Преобразование сигналов и помех радиотехническими цепями
Раздел: Рефераты по коммуникации и связи
Тип: курсовая работа Добавлен 07:02:03 30 апреля 2011 Похожие работы
Просмотров: 794 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Курсовая работа

"Преобразование сигналов и помех радиотехническими цепями"

Таганрог 2011 год

1. Отклик на выходе резонансного усилителя и детектора радиотехнического звена при воздействии радиоимпульса

При нахождении отклика на радиоимпульс

на выходе резонансного усилителя воспользуемся методом комплексной огибающей.

Коэффициент передачи резонансного усилителя можно записать в следующем виде

,

где Kmax = 10 – коэффициент усиления при резонансе,

- обобщенная расстройка контура.

Обозначим, тогда

- расстройка контура,

- постоянная времени контура.

Спектральная плотность комплексной огибающей на входе резонансного усилителя определяется как: [1.c]


На выходе:

.

Заменяя на р определим комплексную огибающую сигнала на выходе резонансного усилителя с помощью обратного преобразования Лапласа

.

Изображение комплексной огибающей представлено двумя слагаемыми. Второе из них отличается знаком и множителем , следовательно комплексная огибающая тоже может быть представлена двумя слагаемыми.

Второе слагаемое будет отличаться от первого знаком и сдвигом во времени на . Первое слагаемое при t < 0 равно нулю, второе при t < tu также равно нулю.

В интервале можно написать


Найдем оригинал, пользуясь теоремой разложения. Полюса подынтегральной функции равны .

Производная знаменателя равна
.

Находя вычеты в точках можно определить на интервале :

Аналогичным способом можно получить выражение для на интервале t > tu

или


Найдем модуль и аргумент комплексной огибающей напряжения . Для этого сначала определим модуль и аргумент выражения .

Таким образом, можно записать выражения для огибающей радиоимпульса на выходе резонансного усилителя

Выражение для начальной фазы напряжения на выходе резонансного усилителя выглядит так:


Радиоимпульс на выходе резонансного усилителя можно описать следующим образом:

На выходе амплитудного детектора в соответствии с заданной характеристикой детектирования имеем

Далее учитывая соотношения , , можно построить согласованные во времени временные диаграммы воздействующего радиоимпульса, радиоимпульса на выходе резонансного усилителя, отклик на радиоимпульс на выходе детектора, которые приведены на рисунках 2, 3 и 4 соответственно.

Рис. 2. Воздействующий радиоимпульс

Рис. 3. Радиоимпульс на выходе резонансного усилителя

Рис. 4. Отклик на радиоимпульс на выходе детектора

2. Спектральная плотность радиоимпульса на входе и выходе резонансного усилителя

Как известно, спектральная плотность прямоугольного импульса определяется выражением [1, с. 37]:

.

Пользуясь свойствами преобразования Фурье, определим спектральную плотность входного радиоимпульса

.

Рассматривая область только положительных частот, получим выражения для модуля и аргумента спектральной плотности радиоимпульса на входе усилителя:

.

Спектральная плотность импульса на выходе резонансного усилителя определяется следующим образом

,


где – комплексный коэффициент передачи линейной цепи, равный

.

Тогда спектральная плотность сигнала на выходе резонансного усилителя имеет вид:

Модули спектральной плотности радиоимпульсов на входе и выходе резонансного усилителя изображены на рисунках 5 и 6 соответственно, причем спектральная плотность рассчитана только для положительных частот. Она будет симметрична относительно нулевой частоты.

Рис. 5. Модуль спектральной плотности радиоимпульса на входе резонансного усилителя


Рис. 6. Модуль спектральной плотности радиоимпульса на выходе резонансного усилителя

3. Спектральная плотность мощности и корреляционная функция шума на выходе резонансного усилителя

Спектральную плотность мощности шума на выходе резонансного усилителя рассчитаем по следующей формуле:

спектральный мощность усилитель резонансный

График зависимости приведен на рис. 7.

Для нахождения корреляционной функции необходимо применить обратное преобразование Фурье к спектральной плотности мощности

.

Вычислив интеграл, получим следующее выражение [1.]


. (9)

Подставив численные значения, получим следующее выражение

.

Корреляционная функция шума на выходе изображена на рисунке 8.

Рис. 7. Спектральная плотность мощности шума на выходе резонансного усилителя

Рис. 8. Корреляционная функция шума на выходе резонансного усилителя

4. Одномерная плотность вероятности шума на входе и выходе детектора при отсутствии сигнала

На выходе резонансного усилителя одномерная плотность вероятности шума подчиняется нормальному закону

,

Определим

Ввых(0)=

или

В-1 .

Соответствующий график приведен на рис. 9.

Для нахождения одномерной плотности вероятности на выходе воспользуемся формулой (11.17) и 11.26 из [1, с. 335,337]:

Формула для линейного детектора.


Формула для квадратичного детектора.

Подставляя соответствующее значение для дисперсии, получаем

Где К – коэффициент учитывающий параметр вольтамперной характеристики диода, и сопротивление нагрузки на выходе детектора. Я предположил К=10. Соответствующий график зависимости приведен на рисунке 10.

Рис. 9. Одномерная плотность вероятности шума на входе детектора


Рис. 10. Одномерная плотность вероятности шума на выходе детектора

Реализации случайных процессов на входе и выходе детектора рассчитаны по методике, предложенной в указаниях к данной работе и приведены на рис. 11 и 12 соответственно.

Рис. 11. Реализация шума на входе детектора


Рис. 12. Реализация шума на выходе детектора

5. Вероятность превышения напряжением на выходе детектора значения сигнала, соответствующего концу импульса

Сигнал на выходе детектора в конце импульса (при ) имеет следующее значение:.

Вероятность превышения напряжением на выходе детектора этого значения можно определить, вычислив площадь под кривой в пределах от этого значения до бесконечности.

Таким образом

Итак, вероятность превышения напряжением на выходе детектора значения сигнала,соответствующего концу импульса составляет не более 50.1%.

6. Отношение мощности сигнала к мощности шума на входе и выходе детектора при амплитуде сигнала на выходе резонансного усилителя, соответствующей концу импульса

Отношение сигнал/шум на входе детектора определяется следующим образом [1, с. 341]:

.

Так как , , то

.

Отношение сигнал/шум на выходе детектора можно определить по формуле [1, с. 341]:

Таким образом .
Заключение

При нахождении отклика на радиоимпульс на выходе резонансного усилителя мы воспользовались методом комплексной огибающей.

Вычисление комплексной огибающей значительно проще, чем непосредственное вычисление сигнала, т. к. изображение комплексной огибающей имеет вдвое меньше полюсов, чем изображение сигнала. Это облегчает вычисление оригинала и обосновывает целесообразность выбора данного метода. Отклик на радиоимпульс на выходе резонансного усилителя отличается от входного радиоимпульса. Искажения происходят очевидно из-за переходных процессов в резонансном усилителе. Длительность переходных процессов 3фк 23 мкс (фк = 1/Дщ 0.707 ), поэтому они не успевают закончиться к концу импульса.

Из анализа графиков для модуля спектральной плотности радиоимпульса на входе и выходе резонансного усилителя видно, что главный максимум сместился влево. Это объясняется расстройкой контура относительно несущей частоты.

При рассмотрении графиков спектральной плотности мощности шума и корреляционной функции шума на выходе резонансного усилителя видно, что удвоенная площадь под первой кривой равна значению дисперсии шума на выходе резонансного усилителя. Это подтверждает правильность произведенных расчетов и построенных графиков.

Из рассмотрения кривых одномерных плотностей вероятности шума, видно что площадь под кривыми близка к единице, т.е. выполняется условие нормировки, а вероятность превышения уровня 3у u не превосходит 1%.

Отношение сигнал шум на входе детектора получилось около 0.5, а на выходе ухудшилось стало 0.153.

Список литературы

1. Гоноровский И.С., Радиотехнические цепи и сигналы. Учебник для вузов. М.: Радио и связь, 1986.

2. Корн Г., Корн Т., Справочник по математике для научных работников и инженеров. М. 1968.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений08:25:37 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
10:42:49 29 ноября 2015

Работы, похожие на Курсовая работа: Преобразование сигналов и помех радиотехническими цепями

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151067)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru