Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Учебное пособие: Разработка урока по теории вероятности

Название: Разработка урока по теории вероятности
Раздел: Рефераты по педагогике
Тип: учебное пособие Добавлен 15:53:47 29 апреля 2011 Похожие работы
Просмотров: 5939 Комментариев: 2 Оценило: 1 человек Средний балл: 4 Оценка: неизвестно     Скачать

Разработка урока по теории вероятности


Тема: Классическое определение вероятности

Цель:

Создать условия для осознания и осмысления блока новой учебной информации.

Задачи:

- Способствовать запоминанию основной терминологии, умению устанавливать события вероятности;

- формировать умение упорядочить полученные знания для рационального применения;

- развитие навыков учащихся в вычислении классической вероятности;

формирование вероятностного мышления;

- способствовать развитию интереса к математике; умений применять новый материал на практике и в жизни.

Оборудование к уроку: доска, компьютер с проектором, игральные кубики, монеты.

Ход урока:

Урок сопровождается компьютерной презентацией.

1. Организационный момент.

Сообщить тему урока и сформулировать его цели.

2. Вступительное слово учителя.

Случай, случайность – с ними мы встречаемся повседневно: случайная встреча, случайная поломка, случайная находки, случайная ошибка. Этот ряд можно продолжать бесконечно. Казалось бы, тут нет места для математики – какие уж законы в царстве Случая! Но и здесь наука обнаружила интересные закономерности – они позволяют человеку уверенно чувствовать себя при встрече со случайными событиями.

Как наука теория вероятности зародилась в 17в. Возникновение понятия вероятности было связано как с потребностями страхования, получившего значительное распространение в ту эпоху, когда заметно росли торговые связи и морские путешествия, так и в связи с запросами азартных игр.

Слово “азарт”, под которым обычно понимается сильное увлечение, горячность, является транскрипцией французского слова hazard, буквально означающего “случай”, “риск”. Азартными называют те игры, а которых выигрыш зависит главным образом не от умения игрока, а от случайности.

Схема азартных игр была очень проста и могла быть подвергнута всестороннему логическому анализу. Первые попытки этого рода связаны с именами известных учёных – алгебраиста Джероламо Кардано (1501 – 1576) и Галилео Галилея (1564 – 1642). Однако честь открытия этой теории, которая не только даёт возможность сравнивать случайные величины, но и производить определенные математические операции с ними, принадлежит двум выдающимися ученым – Блезу Паскалю (1623 – 1662) и Пьеру Ферма. Ещё в древности было замечено, что имеются явления, которые обладают особенностью: при малом числе наблюдений над ними не наблюдается никакой правильности, но по мере увеличения числа наблюдений всё яснее проявляется определенная закономерность. Всё началось с игры в кости.

Азартные игры практиковались в ту пору главным образом среди знати, феодалов и дворян. Особенно распространенной была игра в кости. Было замечено. что при многократном бросании однородного кубика, все шесть граней которой отмечены соответственно числами 1, 2, 3, 4, 5, 6 число очков от 1 до 6 выпадают в среднем одинаково часто, иными словами, выражаясь языком математики, выпадение определённого числа очков имеет вероятность, равную 1/6 (т.е. отношению числа случаев, благоприятствующих событию к общему числу всех случаев). Аналогично вероятность появления на верхней грани кости чётного числи очков равна 3/6 ,так как из шести равновозможных случаев чётное число появляется только в трёх.

Решение порой довольно сложных задач, с которыми обращались заинтересованные лица к Паскалю, Ферма, Гюйгенсу, способствовало разработке основных понятий и общих принципов теории вероятностей, в том числе и правил действия над ними. Отсюда не следует, конечно, заключать, что основоположники теории вероятностей рассматривали азартные игры как единственный или главный предмет разрабатывавшейся ими новой отрасли науки.

На развитие теории вероятностей оказали влияние более серьёзные потребности науки и запросы практики, в первую очередь страховое дело, начатое в некоторых странах ещё в 16в. В 16-17вв. учреждение страховых обществ и страхование судов от пожара распространились во многих европейских странах.

Азартные игры были для ученых только удобной моделью для решения задач и анализа понятий теории вероятности. Об этом заметил ещё Гюйгенс в своей книге “О расчётах в азартной игре” (1657), которая была первой книгой в мире по теории вероятностей. Он писал: “...при - внимательном изучении предмета читатель заметит, что он занимается не только игрой, а что здесь даются основы глубокой и весьма интересной”. Гюйгенс впервые ввёл важное для теории вероятностей понятие математического ожидания, которое получило дальнейшее развитие а трудах Даниила Бернулли, Даламбера и др. Понятие математического ожидания находит немало применений а разных других областях человеческой деятельности.

Таким образом, в 60-е годы 17в. были выработаны первые понятия и некоторые элементы теории вероятностей. В последующие два века учёные столкнулись с множеством новых задач, связанных с исследованием случайных явлений.

Во второй половине XIX века основной вклад внесли русские учёные П. Л. Чебышев, А. А. Марков и А. М. Ляпунов. В это время были доказаны закон больших чисел, центральная предельная теорема, а также разработана теория цепей Маркова. Современный вид теория вероятностей получила благодаря аксиоматизации, предложенной Андреем Николаевичем Колмогоровым. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики.

Классическое определение теории вероятности

Вероятностью события является сумма вероятностей исходов, благоприятствующих этому событию.

Ну а если же вероятное пространство построено из равно возможных исходов - то класическая теорема примет вид:

Вероятностью события называется отношение числа благоприятствующих этому событию исходов к общему числу равновозможных исходов.

Другими словами если мы кидаем одну игральную кость, то шанс выпада четверки будет 1/6.

Где 1 - число благоприятствующих событий (четверка ведь в кости одна), а 6 - общее число исходов (всего 6 сторон у игральной кости).

Так же вероятность представляется в виде:

1. Простой дроби: 1/6

2. Десятичной дроби: 0.1666666(6)

3. Процентах 16.66%

А как подсчитать вероятность случайного события? Ведь оно произошло случайно, значит, не подчиняется закономерностям. Оказывается, и в мире случайного действуют определенные законы.

Этим занимается раздел математики, который называется «теорией вероятностей».

Возьмите в руки кубики.

При бросании кубика сколько различных элементарных событий может произойти? (6)

Сколько событий благоприятных событию «выпадет 4»? (1)

Сформулируем правило:

1. Число всех возможных исходов –n

2. Все исходы равновозможны

3. Количество благоприятных исходов – m

4. P(A) – вероятность события А

P(A) =

учащийся навык классический вероятность

Слово вероятность по-французски - probabilite, по-английски – probability.

Учащимся предлагается по учебнику прочитать правило вычисления вероятностей.

Первичное закрепление изученного.

Событием называется результаты опытов, испытаний или наблюдений.

Задача: исследовать виды событий. Для этого:

1. Приведите примеры событий.

Пользуясь образцом: играется шахматная партия – испытание. Выигрыш, ничья, проигрыш его возможные исходы события.

У больного определили 1-ую группу крови. Проверка группы крови – испытание, 1-я группа крови событие.

2. Какие бывают события?

Достоверное – если оно обязательно произойдет, например, в ящике 10 белых шаров, то событие извлеченный шар – белый – достоверное.

Невозможное - если оно заведомо не может произойти в данном испытании, например, в ящике 10 белых шаров, то событие вытащить черный шар - невозможное.

Случайное событие – которое в данном испытании может произойти, а может и не произойти, например, если при бросании монеты событие – выпал герб - случайное. Попробуйте придумать свои примеры и оформить все, что вы узнали в виде схемы.

Справка: Событие называют случайным, если оно может произойти, а может и не произойти.

Выполните следующие испытания:

1) Подбросьте монету 50 раз. Посчитайте сколько раз

а) выпадет орел.

б) Подбросьте монету 20 раз. Посчитайте сколько раз выпал орел.

в) Как сравнить результаты?

Может вы приведете свои примеры?

На учениях по стрельбе из винтовки стрелок попадал 8 раз из 10 выстрелов.

Какова частота поражения цели у этого спортсмена и сколько попаданий в цель можно ожидать от него на соревнованиях, если каждый участник будет стрелять 30 раз?

Возможные исходы испытаний можно найти путем правдоподобных рассуждений основанных на практическом опыте и здравом смысле.

Пример: Возьмем игральный кубик, то при бросании этого кубика каковы шансы выпадения на его верхней грани 1, 2, 3, 4, 5, 6 очков (одинаковы, т.к. нет оснований считать, что выпадение одного из очков, например 6 более вероятно, чем 2).

Говорят, что вероятность выпадения на верхней грани кубика одного числа очков, например 3 равна 1/6.

А события, имеющие одинаковую вероятность называются равновозможными.

Так что такое вероятность события?

От какого слова произошло это понятие?

Задача Даламбера – французский математик (1717-1783). Найти вероятность того, что при подбрасывании двух монет на обеих монетах выпадут цифры.

После выполнения заданий в группах переходим к отчету групп и подведению итогов.

Теперь давайте ответим на вопросы:

1. Какие события вы узнали? И что такое событие?

2. Что такое относительная частота события?

3. Какова вероятность невозможного события?

4. Какова вероятность достоверного события?

5. В каких пределах находится вероятность?

6. Как называются 2 события, имеющие одинаковую вероятность?

II этап.

А теперь попытаемся выполнить работу.

1. В каждое из приведенных ниже предложении впиши наиболее подходящее по смыслу слово, выбрав его из слов возможно, невозможно, наверняка, маловероятно.

1) Завтра солнце ... взойдет на востоке.

2) ..., что бутерброд упадет маслом вниз.

3) ..., что у Анастасии день рождения 30 февраля.

4) ..., что в Самаре на улице ты встретишь тигра.

2. Запиши номера тех пар событий, которые, по твоему мнению имеют равные шансы произойти в результате одного испытания (т.е. равновозможны).

1) Появление орла и появление решки в результате одного испытания.

2) Выпадения одного очка и выпадение шести очков в результате броска игрального кубика.

3) выпадение одного очка и выпадение одного из четных очков (т.е. 2, либо 4, либо 6).

3. В ящике лежат 1 черная и 2 белых шашки. Саша хочет, не глядя, вытащить черную шашку, он вынимает и это оказывается белая шашка, после чего он кладет ее в карман и делает еще одну попытку. Как ты думаешь, при второй попытке шансы Саши вытащить черную шашку

1) увеличились.

2) уменьшились.

3) остались прежними.

Запиши номер нужного ответа.

Задача

Бросают одну игральную кость. Вычислить вероятность события «выпало четное число очков».

Решение: N = 6; N(A) = 3; P(A) = .

Задача: Ошибка Даламбера

Какова вероятность, что подброшенные вверх две правильные монеты упадут на одну и ту же сторону?

Решение, предложенное Даламбером.

Опыт имеет три равновозможных исхода:

1. Обе монеты упали на «орла».

2. Обе монеты упали на «решку».

3. Одна из монет упала на «орла», другая на «решку».

N = 3; N(A) = 2; P(A) = .

Учащимся предложить подбросить две монеты и найти ошибку в предложенном решении.

Правильное решение.

1. Орел, орел

2. Решка, решка

3. Орел, решка

4. Решка, орел

N = 4; N(A) = 2; P(A) = .

Нельзя объединять два принципиально разных исхода в один. Природа различает все предметы.

Какие из следующих событий – случайные, достоверные, невозможные:

· черепаха научиться говорит;

· вода в чайнике, стоящим на горячей плите закипит;

· ваш день рождения – 19 октября

· день рождение вашего друга – 30 февраля;

· вы выиграете участвуя в лотереи;

· вы не выигрываете, участвуя в беспроигрышной лотереи;

· вы проиграете партию в шахматы;

· на следующей недели испортиться погода;

· вы нажали на звонок, а он не зазвонил;

· после четверга будет пятница;

· после пятницы будет воскресенье.

Для каждого из перечисленных событий определите, какое оно: достоверное, возможное, невозможное

· летом у школьников будут каникулы;

· 1 июля в Норильске будет солнечно;

· после уроков дежурные уберут кабинет;

· в 11-м классе школьники не будут изучать алгебру;

· зимой выпадает снег;

· при включении света, лампочка перегорит;

· вы выходите на улицу, а на встречу вам идет слон.

Придумайте и запишите в тетрадь события, чтобы они соответствовали знакам в таблице например, событие 8 должно быть очень вероятным.

Событие 1 2 3 4 5 6 7 8
Достоверное
Возможное
невозможное

V. Подведение итогов.

Какие ключевые слова урока можно выделить?

Объясните их значение.

Какой ключевой факт сегодня изучен?

Что общего и в чем отличие статистики и вероятности?

Завершить урок хочется такой историей.

- Доктор, - спрашивает пациент – пойдут ли у меня дела на поправку?

- Несомненно, - отвечает врач, - потому что статистика говорит, что один из ста выздоравливает при этой болезни.

- Но почему же при этом именно я должен выздороветь?

- Потому что вы как раз и есть мой сотый пациент.

Домашнее задание:

Составить 2 задачи на вероятность.

Разбить учеников на тройки. Каждая тройка пишет реферат на одну из тем:

1. Даниил Бернулли и его вклад в развитие теории вероятностей.

2. Гюйгенс и его вклад в развитие теории вероятностей

3. Блез Паскаль и его вклад в развитие теории вероятностей

4. Ферма и его вклад в развитие теории вероятностей


Литература

1. Ю.Н.Макарычев, Н.Г.Миндюк. Начальные сведения из теории вероятностей в школьном курсе алгебры. “Математика в школе”. № 7. 2004 г. стр. 24.

2. В.А.Булычев, Е.А.Бунимович. Изучение теории вероятностей и статистики в школьном курсе математики. “Математика в школе”. № 4. 2003 г. стр. 59.

Электронные источники информации

· Бунимович Е.А., Булычев В.А. Вероятность и статистика 5-9. Электронное учебное пособие на CD-ROM. – М.: Дрофа, 2003.

· www.teorver.ru

· http://ru.wikipedia.org/wiki/Теория_вероятности.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений08:14:43 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
10:36:58 29 ноября 2015

Работы, похожие на Учебное пособие: Разработка урока по теории вероятности
Разработка программы факультативного курса по теории вероятностей в ...
... ПЦК преподавателей естественно-математических дисциплин Разработка программы факультативного курса по теории вероятностей в курсе математики 8 класса
В качестве примеров определения вероятностей событий на основе классического определения вероятности можно рассмотреть задания на вычисление вероятности выпадения "орла" или "решки ...
Число, это вероятность случайного события "выпадение "орла" Так как в этих экспериментах "решка" появляется также примерно в половине случаев, то вероятность выпадения "решки ...
Раздел: Рефераты по педагогике
Тип: курсовая работа Просмотров: 9578 Комментариев: 2 Похожие работы
Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать
Методика обучения элементам теории вероятностей на факультативных ...
Введение Глава I. Вероятностно - статистическая линия в базовом школьном курсе математики 1.1 Статистическое мышление и школьное математическое ...
... выпадение "орла" на монете, или четырех очков на кубике) устойчиво сосредотачиваются возле некоторого числа p, которое и называется вероятностью наблюдаемого исхода или события.
Сразу напрашивается множество исходов, состоящее из трех событий (здесь опыт - фосок двух монет): "на обеих монетах выпал герб" = Г, "на обеих монетах выпала цифра" = Ц и "на одной ...
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 9691 Комментариев: 2 Похожие работы
Оценило: 2 человек Средний балл: 4.5 Оценка: неизвестно     Скачать
... quot;Основы теории вероятностей и математической статистики" в ...
Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования "Вятский государственный ...
При подбрасывании кубика невозможное событие - кубик станет на ребро, случайное событие - выпадение какой либо грани.
Событию "сумма очков равна 5" благоприятствуют события (1; 4), (2; 3), (3; 2), (4; 1), а событию "сумма очков равна 10" - события (4; 6), (5; 5), (6; 4). Таким образом, число ...
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 3371 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Возможности использования элементов теории вероятностей и статистики ...
... государственный педагогический университет имени Максима Танка Минск 2002 Введение Развитие теории вероятностей с момента зарождения этой науки и ...
Основателями теории вероятностей были французские математики Б. Паскаль и П. Ферма, и голландский ученый Х. Гюйгенс, в ответах которых на запросы азартных игроков и переписке между ...
Например, при подбрасывании игрального кубика элементарные исходы A2, A4, A6 являются благоприятствующими событию "выпало четное число очков".
Раздел: психология, педагогика
Тип: дипломная работа Просмотров: 6012 Комментариев: 3 Похожие работы
Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать
Классическое определение вероятности
МУНИЦИПАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ГИМНАЗИЯ № 6 РЕФЕРАТ на тему "Классическое определение вероятности". Выполнила ученица 8 "Б" класса ...
Если мы говорим, что при бросании кубика вероятность выпадения одного очка равна , это совсем не значит, что, кинув кубик 6 раз, вы получите одно очко ровно один раз, бросив кубик ...
А, в принципе, можно рассмотреть модель, в которой вероятность выпадения "решки" в два раза больше вероятности выпадения "орла" или в три раза меньше и т. п. Тогда возникает вопрос ...
Раздел: Рефераты по математике
Тип: реферат Просмотров: 618 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Психологический словарь
Борис Гурьевич Мещеряков, Владимир Петрович Зинченко Большой психологический словарь Оглавление Предисловие Персоналии Список авторов Список ...
... p = (P - 1/m) / (1 - 1/m). Величина 1/m называется вероятностью случайного угадывания, или случайного успеха (следует заметить, что в психофизических экспериментах вместо нее часто ...
Оно-то и порождает событие М. Но как впасть в это состояние и как из него выпасть?
Раздел: Рефераты по психологии
Тип: книга Просмотров: 4613 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Правдоподобные рассуждения
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ КУРСОВАЯ РАБОТА на тему "Правдоподобные рассуждения" по дисциплине "Аргументация и логика" КИЕВ 2011 ...
Так, выпадение "орла" при бросании монеты будет равно 1/2, так как равновозможными здесь являются как выпадение "орла", так и "решки"; благоприятствующим же случаем считается ...
Нередко благоприятствующий случай называют шансом, и поэтому говорят, например, что шанс выбросить пятерку при игре в кости составляет 1/6. Подход к интерпретации вероятности ...
Раздел: Рефераты по философии
Тип: курсовая работа Просмотров: 1182 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Курс лекций по теории вероятностей
Раздел 1. Классическая вероятностная схема 1.1 Основные формулы комбинаторики В данном разделе мы займемся подсчетом числа "шансов". О числе шансов ...
Ѭ = {1, 2, 3, 4, 5, 6} . Слова "известно, что выпало более трех очков" означают, что в эксперименте произошло событие B = {4, 5, 6},. Слова "какова при этом вероятность того, что ...
Теперь мы можем вернуться к примеру 20(б) и выписать ответ: так как вероятности выпадения шестерки и единицы равны 1/6, а вероятность третьего исхода (выпали любые другие грани ...
Раздел: Рефераты по математике
Тип: реферат Просмотров: 2209 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Теория вероятностей и математическая статистика
... Государственное образовательное учреждение высшего профессионального образования "Южный Федеральный университет" Факультет математики, механики
1) овладеть основами теории вероятностей, усвоив понятия множества элементарных исходов, алгебры случайных событий, вероятностной функции как числовой функции множеств, случайной ...
Найти вероятность того, что во второй раз выпадет большее число очков, чем в первый раз.
Раздел: Рефераты по математике
Тип: учебное пособие Просмотров: 21966 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Все работы, похожие на Учебное пособие: Разработка урока по теории вероятности (4663)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151216)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru