Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Похідні та диференціали функції багатьох змінних

Название: Похідні та диференціали функції багатьох змінних
Раздел: Рефераты по математике
Тип: реферат Добавлен 00:45:26 27 апреля 2011 Похожие работы
Просмотров: 13038 Комментариев: 2 Оценило: 6 человек Средний балл: 3.8 Оценка: 4     Скачать

ПОХІДНІ ТА ДИФЕРЕНЦІАЛИ ФУНКЦІЇ БАГАТЬОХ ЗМІННИХ

1 Частинні похідні

Нехай функція визначена в деякому околі точки .
Надамо змінній x приросту, залишаючи змінну незмінною, так, щоб точка належала заданому околу.

Величина

називається частинним приростом функції за змінноюx.

Аналогічно вводиться частинний приріст функції за змінною:

.

Якщо існує границя

,

то вона називається частинною похідною функції в точці за змінною x і позначається одним із таких символів:

.

Аналогічно частинна похідна функції за визначається як границя

і позначається одним із символів:

.

Згідно з означенням при знаходженні частинної похідної обчислюють звичайну похідну функції однієї змінної x, вважаючи змінну сталою, а при знаходженні похідної сталою вважається змінна x. Тому частинні похідні знаходять за формулами і правилами обчислення похідних функцій однієї змінної.

Частинна похідна (або) характеризує швидкість зміни функції в напрямі осі (або).

З’ясуємо геометричний зміст частинних похідних функції двох змінних. Графіком функції є деяка поверхня (рис 1). Графіком функції є лінія перетину цієї поверхні з площиною. Виходячи з геометричного змісту похідної для функції однієї змінної, отримаємо, що, де– кут між віссю і дотичною, проведеною до кривої в точці. Аналогічно.

Рисунок 1 – Геометричний зміст частинних похідних

Для функції n змінних можна знайти n частинних похідних:

,

де

,

.

Щоб знайти частинну похідну, необхідно взяти звичайну похідну функції за змінною, вважаючи решту змінних сталими.

Якщо функція задана в області і має частинні похідні в усіх точках, то ці похідні можна розглядати як нові функції, задані в області.

Якщо існує частинна похідна за x від функції, то її називають частинною похідною другого порядку від функції за змінною x і позначають або .

Таким чином, за означенням

або.

Якщо існує частинна похідна від функції за змінною, то цю похідну називають мішаною частинною похідною другого порядку від функції і позначають, або.

Отже, за означенням

або .

Для функції двох змінних можна розглядати чотири похідні другого порядку:

.

Якщо існують частинні похідні від частинних похідних другого порядку, то їх називають частинними похідними третього порядку функції, їх вісім:

.

Виникає запитання: чи залежить результат диференціювання від порядку диференціювання? Інакше кажучи, чи будуть рівними між собою мішані похідні, якщо вони взяті за одними і тими самими змінними, одне й те саме число разів, але в різному порядку? Наприклад, чи дорівнюють одна одній похідні

і або і?

У загальному випадку відповідь на це запитання негативна.

Проте справедлива теорема, яку вперше довів К.Г.Шварц.

Теорема (про мішані похідні).Якщо функція визначена разом із своїми похідними в деякому околі точки , причому похідні та неперервні в точці, то в цій точці

.

Аналогічна теорема справедлива для будь-яких неперервних мішаних похідних, які відрізняються між собою лише порядком диференціювання.

2 Диференційованість функції

похідна диференціал функція змінна

Нехай функція визначена в деякому околі точки. Виберемо прирости і так, щоб точка належала розглядуваному околу і знайдемо повний приріст функції в точці:

.

Функція називається диференційовною в точці М, якщо її повний приріст в цій точці можна подати у вигляді

, (1)

де та – дійсні числа, які не залежать від та , – нескінченно малі при і функції.

Відомо, що коли функція однієї змінної диференційовна в деякій точці, то вона в цій точці неперервна і має похідну. Перенесемо ці властивості на функції двох змінних.

Теорема 1 (неперервність диференційовної функції).

Якщо функція диференційовна в точці М, то вона неперервна в цій точці.

Доведення

Якщо функція диференційовна в точці М, то з рівності (1) випливає, що. Це означає, що функція неперервна в точці М.

Теорема 2 (існування частинних похідних диференційовної функції). Якщо функція диференційовна в точці , то вона має в цій точці похідні та і.

Доведення

Оскільки диференційовна в точці,то справджується рівність (1). Поклавши в ній, отримаємо,

.

Поділимо обидві частини цієї рівності на і перейдемо до границі при:

.

Отже, в точці існує частинна похідна. Аналогічно доводиться, що в точці існує частинна похідна.

Твердження, обернені до теорем 1 і 2, взагалі кажучи, неправильні, тобто із неперервності функції або існування її частинних похідних ще не випливає диференційовність. Наприклад, функція неперервна в точці, але не диференційовна в цій точці. Справді, границі

не існує, тому не існує й похідної. Аналогічно впевнюємося, що не існує також похідної. Оскільки задана функція в точці не має частинних похідних, то вона в цій точці не диференційовна.

Більш того, відомо приклади функцій, які є неперервними в деяких точках і мають в них частинні похідні, але не є в цих точках диференційовними.

Теорема 3 (достатні умови диференційовності ).

Якщо функція має частинні похідні в деякому околі точки і ці похідні неперервні в точці М, то функція диференційовна в точці М.

Доведення

Надамо змінним x і приростів , таких, щоб точка належала даному околу точки . Повний приріст функції запишемо у вигляді

. (2)

Вираз у перших квадратних дужках рівності (2) можна розглядати як приріст функції однієї змінної x, а в других – як приріст функції змінної . Оскільки дана функція має частинні похідні, то за теоремою Лагранжа отримаємо:

.

Похідні та неперервні в точці М, тому

,

.

Звідси випливає, що

,

,

де, – нескінченно малі функції при і.

Підставляючи ці вирази у рівність (2), знаходимо

, а це й означає, що функція диференційовна в точці.

З теорем 2 і 3 випливає такий наслідок: щоб функція була диференційовною в точці, необхідно, щоб вона мала в цій точці частинні похідні, і достатньо, щоб вона мала в цій точці неперервні частинні похідні.

Зазначимо, що для функції однієї змінної існування похідної в точці є необхідною і достатньою умовою її диференційовності в цій точці.

3 Повний диференціал функції та його застосування до обчислення функцій і похибок. Диференціали вищих порядків

Нагадаємо, що коли функція диференційовна в точці, то її повний приріст у цій точці можна подати у вигляді

,

де і при.

Повним диференціалом диференційовної в точці функції називається лінійна відносно та частина повного приросту цієї функції в точці M, тобто

. (3)

Диференціалами незалежних змінних x та назвемо прирости цих змінних. Тоді з урахуванням теореми 2 рівність (3) можна записати так:

. (4)


Аналогічна формула має місце для диференційовної функції трьох змінних:

. (5)

З формул (4) і (5) може здатися, що повний диференціал існуватиме у кожній точці, в якій існують частинні похідні. Але це не так. Згідно з означенням, повний диференціал можна розглядати лише стосовно диференційовної функції.

Теореми та формули для диференціалів функції однієї змінної повністю зберігаються і для диференціалів функцій двох, трьох і т.д. змінних . Так, незалежно від того, від яких аргументів залежать функції u і , завжди справедливі рівності

Покажемо, що різниця між повним приростом і диференціалом при і є нескінченно мала величина вищого порядку, ніж величина.

Дійсно, з формул (1) і (3) маємо

,

оскільки функції – нескінченно малі при, , а та – обмежені функції:

.

Отже, різниця – нескінченно мала величина вищого порядку, ніж. Тому повний диференціал називають також головною частиною повного приросту диференційовної функції. При цьому виконується наближена рівність або

. (6)

Ця рівність тим точніша, чим менша величина. Рівність (6) широко використовується у наближених обчисленнях, оскільки диференціал функції обчислюється простіше, ніж повний приріст.

Покажемо, як за допомогою диференціала можна оцінити похибку в обчисленнях.

Нехай задана диференційовна функція, незалежні змінні якої виміряні з точністю. Потрібно знайти похибку, з якою обчислюється u.

Природно вважати, що ця похибка дорівнює величині

.

Для малих значень маємо

,

звідки

.

Якщо через позначити максимальну абсолютну похибку змінної, то можна отримати значення максимальної абсолютної похибки функції :

. (7)

Щоб оцінити максимальну відносну похибку функції u, поділимо обидві частини рівності (7) на:

.

Оскільки, то

,

або

,

тобто максимальна відносна похибка функції дорівнює максимальній абсолютній похибці її логарифма.

Введемо поняття диференціала вищого порядку.

Нехай функція незалежних змінних ,. Повний диференціал цієї функції, знайдений за формулою (3), називають ще диференціалом
першого порядку. Диференціал другого порядку визначають за формулою

.

Тоді, якщо функція має неперервні частинні похідні, то

,

звідки

. (8)

Символічно це записують так:

.

Аналогічно можна отримати формулу для диференціала третього порядку:

.

Застосовуючи метод математичної індукції, можна отримати формулу для диференціала n-го порядку:

. (9)

Зазначимо, що формула (9) справедлива лише для випадку, коли змінні x і функції є незалежними змінними.

4 Похідна складеної функції. Повна похідна. Інваріантність форми повного диференціала

Нехай – функція двох змінних та , кожна з яких, у свою чергу, є функцією незалежної змінної :

тоді функція є складеною функцією змінної .

Теорема. Якщо функції диференційовні в точці, а функція диференційовна в точці, то складена функція також диференційовна в точці. Похідну цієї функції знаходять за формулою

. (10)

Доведення

За умовою теореми ,

де та при,.

Поділимо на і перейдемо до границі при:

Аналогічно знаходять похідну, якщо число проміжних змінних більше двох. Наприклад, якщо , де , то

. (11)

Зокрема, якщо, а, то

,

а оскільки, то

. (12)

Цю формулу називають формулою для обчислення повної похідної
(на відміну від частинної похідної).

Розглянемо загальніший випадок. Нехай функція двох змінних та, які, в свою чергу, залежать від змінних :, , тоді функція є складеною функцією незалежних змінних та, а змінні та – проміжні.

Аналогічно попередній теоремі доводиться таке твердження.

Якщо функції та диференційовні в точці , а функція диференційовна в точці , то складена функція диференційовна в точці і її частинні похідні знаходяться за формулами:

; . (13)


Формули (13) можна узагальнити на випадок більшого числа змінних. Якщо, де, то

Знайдемо диференціал складеної функції. Скориставшись формулами (13), отримаємо

Отже, диференціал функції, де , , визначається формулою

, (14)

де

.

Порівнявши формули (14) і (4) дійдемо висновку, що повний диференціал функції має інваріантну (незмінну) форму незалежно від того, чи є x та незалежними змінними, чи диференційовними функціями змінних u та v. Проте формули (4) і (14) однакові лише за формою, а по суті різні, бо у формулі (4) і– диференціали незалежних змінних, а у формулі (14) і– повні диференціали функцій та .

Диференціали вищих порядків властивості інваріантності не мають. Наприклад, якщо, де , , то

(15)

Формула (15) відрізняється від формули (8), оскільки для складеної функції диференціали та можуть і не дорівнювати нулю. Отже, для складеної функції, де , , формула (8) неправильна.

5 Диференціювання неявної функції

Нехай задано рівняння

, (16)

де – функція двох змінних.

Нагадаємо, що коли кожному значенню x з деякої множини відповідає єдине значення, яке разом з x задовольняє рівняння (16), то кажуть, що це рівняння задає на множині неявну функцію.

Таким чином, для неявної функції, заданої рівнянням (16), має місце тотожність

.

Які ж умови має задовольняти функція щоб рівняння (16) визначало неявну функцію і при тому єдину? Відповідь на це запитання дає така теорема існування неявної функції [8].

Теорема. Нехай функція і її похідні та визначені та неперервні у будь-якому околі точки і , а; тоді існує окіл точки , в якому рівняння визначає єдину неявну функцію, неперервну та диференційовну в околі точки і таку, що .

Знайдемо похідну неявної функції. Нехай ліва частина рівняння (16) задовольняє зазначені в теоремі умови, тоді це рівняння задає неявну функцію, для якої на деякій множині точок x має місце тотожність. Оскільки похідна функції, що тотожно дорівнює нулю, також дорівнює нулю, то повна похідна. Але за формулою (12) маємо , тому , звідки

. (17)

За цією формулою знаходять похідну неявної функції однієї змінної.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений08:13:09 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
10:36:08 29 ноября 2015

Работы, похожие на Реферат: Похідні та диференціали функції багатьох змінних
Экономическая система
1. Эк-я с-ма - ед-во ч-ка и общ-го пр-ва В любой ЭС существует 2 вида отношений: 1-отношение людей к природе; 2. отношение людей друг к другу. В ...
Зп = Зм / t'раб * tраб, где Зм - месячная повременная ЗП работника, руб.; tраб - число рабочих часов по графику в данном месяце; t'раб - количество часов, фактически отраб-х ...
Преим-ва: созд-ся благопр-е усл-я для внедр-я новой техники, поточного метода орг-ции пр-ва, механизации и автом-ции, сокращ-ся дл-сть цикла.
Раздел: Рефераты по экономике
Тип: шпаргалка Просмотров: 1654 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Розрахунок магістрального конвеєрного штреку
1 ЗАГАЛЬНА ЧАСТИНА 1.1 Загальні відомості про шахту Поле шахти "Україна" розташоване на Красно армійському горно - промисловому районі. По ...
Вн, Вв - відповідно ширіша виробки внизу та нагорі, м;
ѭ роб. дн. - кількість робочих днів в місяці, дн.
Раздел: Промышленность, производство
Тип: дипломная работа Просмотров: 979 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Административное право (шпаргалка)
1. ГОСУДАРСТВЕННОЕ УПР-ИЕ, ПОНЯТИЕ И ОСОБЕННОСТИ Понятие и особ-ти соцупр-ия. Определение упр-ия: 1. Это целенапр-ое орг-щее возд-ие человека на соотв ...
ОИВ - это структурное подразделение гос.- властного мех-ма (госаппарата), создаваемое специально для повседневного функц-ия в системе разделения властей с целью проведения в жизнь ...
Адм. право и деесп-сть ОИВ возникает одновременно с их образованием и определением компетенции, прекращается в связи с их упразднением.
Раздел: Рефераты по административному праву
Тип: шпаргалка Просмотров: 5291 Комментариев: 6 Похожие работы
Оценило: 9 человек Средний балл: 3.1 Оценка: 3     Скачать
Шпаргалки к экзамену по истории
1462-1505 княжение Ивана 3 1505-1533 княжение Вас 3 1463 ярославское кнво 1474 ростовское кн-во 1471 битва на р.Шелони 1478 Новгород 1485 Тверское кн ...
1666 пох в.УСА.1667 пох.
До 1718 делами полит сыска занимался Преображенский приказ=функц перешли к тайной коллегии.областная реформа 1708-1710 деление стараны на 8 губерний.
Раздел: Рефераты по государству и праву
Тип: реферат Просмотров: 573 Комментариев: 2 Похожие работы
Оценило: 1 человек Средний балл: 2 Оценка: неизвестно     Скачать
Шпаргалки к госэкзаменам по Банковсому Делу
Банковская система РФ. (2) БС - форма орг-ции ф-нирования в стране специализированных кред. уч-ий, сложивш. исторически закреплена законами. Понятие ...
А-вы: ден. ср-ва, кратср. фин. влож. в ц.б., дебит. зад-ть до 30 дн.
Д\этого необх. развитый вторич. рынок ц.б., его функц-е обесп-т ликв-ть кап-ла ип. банков.
Раздел: Рефераты по банковскому делу
Тип: реферат Просмотров: 1515 Комментариев: 5 Похожие работы
Оценило: 4 человек Средний балл: 4.5 Оценка: неизвестно     Скачать
Вопросы,ответы и шпоры по специальным дисциплинам
1.Современные представления о сущности, функциях и роли денег. Современные экономические теории не определяют строго сущность денег. Согласно ...
Фин/ мех-зм дел. на:- фин/мех-зм орг-ций; - страх. мех-зм; - мех-зм функци-ния гос/органов;- кредит. политику.
... спец.уполномоч-х на это орг-й.Акционер-е страх-е - негос.орг-я форма, где в качестве страх-ка выступ. частн. кап-ал в виде акц-го общ-ва,уставн/фонд кот.форм-тся из акций (обл.) и ...
Раздел: Рефераты по экономике
Тип: шпаргалка Просмотров: 6038 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Все работы, похожие на Реферат: Похідні та диференціали функції багатьох змінних (111)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150538)
Комментарии (1836)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru