Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364141
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8693)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Исследование методов вычисления определенных интегралов

Название: Исследование методов вычисления определенных интегралов
Раздел: Рефераты по информатике, программированию
Тип: реферат Добавлен 07:06:20 18 апреля 2011 Похожие работы
Просмотров: 4293 Комментариев: 3 Оценило: 1 человек Средний балл: 4 Оценка: неизвестно     Скачать

УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ФИЛИАЛ В ГОРОДЕ СТЕРЛИТАМАК

КАФЕДРА ЕСТЕСТВЕННО-НАУЧНЫХ И ОБЩЕПРОФЕССИОНАЛЬНЫХ ДИСЦИПЛИН

ИССЛЕДОВАНИЕ МЕТОДОВ ВЫЧИСЛЕНИЯ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе по ИНФОРМАТИКЕ

2403.302413.000ПЗ

(обозначение документа)

Группа ВТС-109 Фамилия, и. о. Подпись Дата Оценка
Студент Терещук А.И.
Консультант Карасев Е.М.
Проверил

Стерлитамак 2011г.

Содержание

Введение

Теоретическая часть

Метод Симпсона (парабол)

Пример применения

Практическая часть

Программное вычисление

Визуализация методов

Заключение

Список литературы

Введение

При решении ряда актуальных физических и технических задач встречаются определенные интегралы от функций, первообразные которых не выражаются через элементарные функции. Кроме того, в приложениях приходится иметь дело с определенными интегралами, сами подынтегральные функции которых не являются элементарными. Это приводит к необходимости разработки приближенных методов вычисления определенных интегралов.

Мне была поставлена задача исследовать два метода вычисления определенных интегралов: метод трапеций и метод Симпсона (парабол)

метод трапеция симпсон интеграл

Теоретическая часть

Метод трапеций

Пусть требуется вычислить интеграл . Разобьем сегмент на n равных частей при помощи точек . Метод трапеций заключается в замене интеграла суммой

площадей трапеций с основаниями, соответственно равными и , и с высотами, равными .

Таким образом, справедлива формула:

,

Где R - остаточный член. Это формула называется формулой трапеций .

Рисунок 1 - Криволинейная трапеция

По методу трапеций интеграл равен сумме площадей прямоугольных трапеций, где основание трапеции какая-либо малая величина (точность), и сумма площадей прямоугольников, где основание прямоугольника какая-либо малая величина (точность), а высота определяется по точке пересечения верхнего основания прямоугольника, которое график функции должен пересекать в середине.

Рисунок 2 - Метод трапеций

Метод Симпсона (парабол)

Для вычисления интеграла снова разобьем сегмент на n равных частей при помощи точек и обозначим через середину сегмента . Метод парабол заключается в замене интеграла суммой

площадей фигур и представляющий собой трапеции, лежащие под параболами, проходящими через три точки графика функции f ( x) cабсциссами .

Таким образом, справедлива формула:

,

Где R - остаточный член. Это формула называется формулой Симпсона.

Пример применения

Рисунок 3 - График функции

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10
x 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
y 1 0,86 0,76 0,68 0,6 0,55 0,5 0,47 0,46 0,43 0,41

Найдем площадь криволинейной трапеции методом трапеций:

S=0,1* ( (1+0,41) /2+0,86+0,76+0,68+0,6+0,55+0,5+0,47+0,46+0,43) =0,6025 кв. ед

Найдем площадь криволинейной трапеции методом Симпсона:

S=0,0017*2* (1+0,41+2* (0,76+0,6+0,5+0,46) +4* (0,86+0,68+0,55+0,47+0,43)) =

=0,6123 кв. ед


Блок-схема метода трапеций


Блок-схема метода Симпсона

Практическая часть

Конструирование интерфейса

Программа разрабатывается в объектно-ориентированной среде программирования Lazarus.

Перед началом программирования, была создана форма Заставка.

Рисунок 4 - Заставка

В этом окне расположены:

· Кнопка "Запуск", позволяющая приступить к началу программы;

· Компоненты Label;

Затем была создана основная форма Меню, позволяющая выбирать операции.

Рисунок 5 - Основная форма

Данное окно представляет главное окно программы.

В этом окне расположены:

· Компоненты Label для подписи компонентов Edit;

· Компонент MainMenuдля выбора операции;

Далее была создана форма Параметры, предназначенная для введения данных.

Рисунок 6 - Параметры

В этом окне расположены:

· Компоненты Label для подписи компонентов Edit;

· Две кнопки: "OK" - принимает данные и возвращается на главное меню; "Отмена" - позволяет вернуться к главному окну, не принимая данных;

Затем была создана форма Решение, на которой будет показана площадь по разным методам вычислений и визуализироваться один из методов.

Рисунок 7 - Решение

В этом окне расположены:

· Компонент Label для подписи компонента Edit;

· Две кнопки: "График" - визуализирует метод трапеций; "OK" - принимает данные и возвращается на главное меню;

· Компонент Chartдля отображения графика;

Следующая форма была создана сравнение методов, то есть для исследования методов на погрешность с заданной точностью.

Рисунок 8 - Исследование на погрешность

В этом окне расположены:

· Три кнопки: Кнопка "График погрешности" визуализирует сравнение методов; Кнопка "Сохранить" сохраняет результаты сравнения в текстовый файл; Кнопка "OK" - принимает данные и возвращается на главное меню;

· Компонент Chartдля отображения графика;

Программное вычисление

По блок-схеме была создана программа для вычисления интеграла методами Симпсона и трапеций:

// Вводим переменные:

var

Form2: TForm2;

a,b,E,h,S,S1,x: real; n, i: integer;

implementation

{ TForm2 }

uses unit1,unit3,unit4,unit5;

// Описываем функцию:

function f (x: real): real;

begin

f: =1/Sqrt (1+3*x+2*x*x);

end;

// В соответствие с блок-схемой напишем программу на языке высокого уровня:

procedure TForm2. MenuItem4Click (Sender: TObject);

begin

// найдем площадь интеграла по методу трапеций

S: =0; // изначально обнуляем значение площади интеграла

n: =1; // начальное значение количества разбиений

Repeat // начало цикла

S1: =S; // предыдущее значение площади изначально равно значению площади с количеством разбиений равным 1

n: =2*n; // увеличиваем количество разбиений в два раза

h: = (b-a) /n; // формула вычисления шага

S: =f (a) +f (b); // значение функции в нижнем пределе + значение функции в верхнем пределе определенного интеграла

x: =a; // значению xприсвоим значение нижнего предела

fori: =1 ton-1 do // для i-того элемента, изменяющегося от 1 до n-1

begin

x: =x+h; // х увеличиваем на шаг

S: =S+2*f (x) // сумма площадей трапеций

end;

S: =S*h/2; // вычислим площадь по формуле

Untilabs (S-S1) <=E; // если разность значения площади и предыдущего значения площади меньше или равна заданной точности Е, то

Form4. Edit1. Text: =FloatToStr (S); // выводим значение на экран

Form4. Caption: ='Вычисление методом трапеций';

Form4. Button2. visible: =True;

Form4. Chart1. Visible: =True;

Form4. ShowModal;

end;

procedure TForm2. MenuItem8Click (Sender: TObject);

begin

// найдем площадь интеграла по методу Симпсона (парабол)

S: =0; // начальное значение количества разбиений

n: =1; // изначально обнуляем значение площади интеграла

Repeat // начало цикла

S1: =S; // предыдущее значение площади изначально равно значению площади с количеством разбиений равным 1

n: =2*n; // увеличиваем количество разбиений в два раза

h: = (b-a) /n; // формула вычисления шага

S: =f (a) +f (b); // значение функции в нижнем пределе + значение функции в верхнем пределе определенного интеграла

x: =a; // значению xприсвоим значение нижнего предела

fori: =0 tondo // для i-того элемента, изменяющегося от 1 до n-1

begin

x: =a+i*h; // х увеличиваем

if x=a then s: =s+f (x) else

if x=b then s: =s+f (x) else

ifimod2 = 0 thens: =s+2*f (x) elses: =s+4*f (x); // если число четное, то вычисляется по формуле s: =s+2*f (x), а если нечетное, то по s: =s+4*f (x)

end;

S: =S*h/3; // вычислим площадь по формуле

Untilabs (S-S1) <=E; // если разность значения площади и предыдущего значения площади меньше или равна заданной точности Е, то

Form4. Edit1. Text: =FloatToStr (S); // выводим значение на экран

Form4. Caption: ='Вычисление методом парабол';

Form4. Button2. visible: =False;

Form4. Chart1. Visible: =False;

Form4. ShowModal;

end;

Визуализация методов

Для открытия программы необходимо запустить project1. exe. После запуска откроется окно программы (рис.4). Предварительно создаем текстовый файл integral. txt в том же каталоге, где расположена программа (рис.9) в этом файле должны сохраниться результаты сравнения.

Запускаем программу. С помощью компонента MainMenuвыберем вкладки "Ввод", "Решение", "Исследование" и "Заставка".

Выбираем вкладку "Ввод - Параметры" открывается Form2 и вводим параметры (рис.10):

Рисунок 9 – Меню

Рисунок 10 - Параметры

Нажимаем на кнопку "OK" и возвращаемся к основной форме. Выбираем методы решения:

Рисунок 12 - Вычисление методов трапеций

Аналогично выглядит форма, когда вычисляем площадь по методу Симпсона (парабол). Далее выбираем вкладку "Исследование на погрешность" открывается Form5, нажимаем на кнопку "График", затем на кнопку "Сохранить"

Рисунок 14 - Исследование на погрешность

Из графика видно, что метод Симпсона (парабол) намного точнее, почти совпадает с точным значением, вычисленным в пакете Maxima.

Затем на кнопку "Сохранить". Откроем каталог, где расположена программа и откроем текстовый файл integral. Txt

Рисунок 15 - Сохранение результатов сравнения

Нажмем на кнопку "OK" и вернемся в основной форме, чтобы завершить исследование вычислительных методов для нахождения интеграла.

Заключение

В процессе разработки курсовой работы были проработаны следующие методы вычисления определенных интегралов - метод трапеций и метод Симпсона (парабол). Был визуализирован ход вычисления интеграла в виде графика. На графике была представлена зависимость разбиений от заданной точности.

В процессе выполнения курсовой работы были закреплены практические навыки по разработке пользовательских приложений при помощи объектно-ориентированного языка программирования Lazarusи современных компьютерных технологий обработки информации, а также навыки в составлении текстовой документации.

Список литературы

1. Намиот Д.Е. Основные особенности языка программирования Delphi7. - М.: ‘Память ’, 1999.

2. Пильщиков В.Н. Программирование на языке Delphi7. - М.: Диалог--Мифи, 1999.

3. Михеева Е.В. Информационные технологии в профессиональной деятельности: Учебное пособие для сред. проф. образования. - 2-е издание, стер. - М.: Издательский центр "Академия", 2005. - 384 с.

4. Румянцева Е.Л., Слюсарь В.В. Информационные технологии: учеб. пособие / Под. ред. проф. Л.Г. Гагариной. - М.: ИД "ФОРУМ": ИНФРА - М, 2007. - 256 с.: ил.

5. Ильин В.А., Поздняк Э.Г. - Основы математического анализа. Часть 1 - М.: Физматлит, 2008 - 648 с.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Рефераты суперские! Сделай паузу, студент, вот повеселись: Студент сдает экзамен по физике. Сдает очень плохо. Профессор пытается его вытянуть, спрашивает: - Ну скажите хотя бы, при какой температуре кипит вода? - Профессор, я не знаю, при какой температуре она кипит, но я знаю, что при 40 градусах она превращается в водку! Кстати, анекдот взят с chatanekdotov.ru
Лопух22:24:19 07 июля 2017
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:57:53 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
10:27:57 29 ноября 2015

Работы, похожие на Реферат: Исследование методов вычисления определенных интегралов

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(174208)
Комментарии (1985)
Copyright © 2005-2017 BestReferat.ru bestreferat@gmail.com реклама на сайте

Рейтинг@Mail.ru