Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Курсовая работа: Статистико-экономический анализ производства сахарной свеклы

Название: Статистико-экономический анализ производства сахарной свеклы
Раздел: Рефераты по экономико-математическому моделированию
Тип: курсовая работа Добавлен 03:12:41 15 апреля 2011 Похожие работы
Просмотров: 5656 Комментариев: 1 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Министерство сельского хозяйства Российской Федерации

Воронежский государственный аграрный университет им. К.Д. Глинки

Кафедра статистики и анализа хозяйственной деятельности

предприятий АПК

Студент: Кузьмина Ирина Витальевна

Ф – III – 2а

Тема: Статистико-экономический анализ производства

сахарной свеклы

КУРСОВОЙ ПРОЕКТ

По дисциплине «Статистика»

Научный руководитель: Хаустова Галина Ивановна

Воронеж 2008

Содержание

Введение

1.Обзор литературы по исследуемой проблеме

1.1 Обзор применяемых статистических методов

1.2 Необходимость производства сахарной свеклы в народном хозяйстве. Анализ урожая и урожайности сахарной свеклы в РФ и по Воронежской области

2.Анализ рядов динамики

2.1 Динамика валового сбора сахарной свеклы за 6 лет в ЗАО "Землянское" Семилукского района

2.2 Динамика урожайности сахарной свеклы за 9 лет в ЗАО "Землянское" Семилукского района

2.3. Выявление общей тенденции в рядах динамики

3. Индексный анализ средней урожайности валового сбора сахарной свеклы

4. Выявление взаимосвязей методом аналитической группировки

4.1Однофакторный дисперсионный анализ

5.Проектная часть

5.1 Построение многофакторной корреляционной модели урожайности сахарной свеклы

5.2 Расчет резервов роста урожайности и валового сбора сахарной свеклы

Выводы и предложения

Список использованной литературы

Приложения


Введение

Сахарная свекла - основное сырье для производства сахара в России. Из свеклы получают более 50% сахара. Сахарная свекла дает такие побочные продукты, как ботва, отходы переработки сырья (жом, патока, дефекат, применяемый как удобрение для кислых почв).

Подъем отечественного свекловодства- главное направление решения проблемы обеспечения населения страны сахаром ,а перерабатывающей промышленности сырьем. Это позволить решить две задачи .Во-первых, будет предотвращена опасность зависимости конъюнктуры мирового рынка, во-вторых ,полнее будет использоваться производственных потенциал сельского хозяйства, а также ресурсопоставляющих ,обслуживающих и перерабатывающих отраслей.

Состояние свекловичного производства характеризуют следующие показатели: размер посевных площадей, концентрация посевов, валовое производство сахарной свеклы, свеклоупотребление (доя площади посевов свеклы в площади пашни, выраженная в процентах), объем заготовок сырья с единицы пощади, выход сахара с 1 га, число свеклосеющих хозяйств.

Наиболее важным показателем экономической эффективности в свекловодстве является урожайность. Низкая урожайность- следствие не только неблагоприятных погодных условий в отдельные годы, но и плохой организации, недостаточной специализации, концентрации производства. Из-за нарушения паритета цен на сельскохозяйственную и промышленную продукцию свеклосеющие хозяйства практически не в состоянии приобретать дорогостоящую специализированную технику, минеральные удобрения, гербициды.

Анализ производства сахарной свеклы является одной из важнейших задач статистики.

Предметом исследования моей курсовой работы является вопрос о статистико-экономическом анализе урожая и урожайности сахарной свеклы, а также проблемы, связанные с производством и повышением урожайности данной культуры.

В соответствии с предметом исследования курсовая работа предполагает решение следующих задач:

- проведение анализа рядов динамики,

- рассмотрение индексного метода анализа и его сущности,

- рассмотрение методов статистической группировки и дисперсионного анализа,

- разработка проектной части с построением многофакторной корреляционной модели урожайности сахарной свеклы,

- расчет резервов роста урожайности и валового сбора сахарной свеклы.

При написании данной работы мною были использованы труды Ефимовой М.Р., Елисеевой И.И., Зинченко А.П., Ряузова Н.Н., Спичака В.В., Суркова И.М. и других ученых. Часть информации была получена с помощью информационно-справочных ресурсов Интернета и различных периодических изданий по экономике сельского хозяйства и сахарной свекле.

Мною были использованы следующие методы: метод исследования, метод анализа и синтеза, единство общего и особенного, метод восхождения от простого к сложному, а также статистические методы исследования, такие как - сводка и группировка статистического материала, построение различные статистических показателей, экономический анализ, метод программирования на ЭВМ.

1.Обзор литературы по исследуемой проблеме

1.1 Обзор применяемых статистических методов

Под урожаем в статистике понимается показатель общего сбора продукции данной культуры со всей площади ее возделывания. Урожайность — это объем продукции с единицы площади (гектар, кв.м.) или с дерева (куста).

Урожай и урожайность — основа всего сельскохозяйственного производства, база развития животноводства, главные показатели использования сельскохозяйственных угодий, источник роста благосостояния государства и его населения. Повышение урожайности — важнейший фактор снижения затрат на единицу продукции и роста ее конкурентоспособности на рынке. В силу ограниченности земли только рост урожайности может обеспечить увеличение объемов производства продукции растениеводства.

При изучении урожая и урожайности перед статистикой стоят задачи, общие для исследования всех объектов: определение показателей объема (уровня) явления, его состава и качества, динамики, факторов формирования. Важнейшей задачей является проведение всестороннего экономико-статистического анализа урожайности с целью поиска резервов и путей ее повышения. Это особенно важно для России, урожайность основных культур в которой составляет всего 30...50% от возможного и достигнутого в странах и хозяйствах с высокой интенсивностью производства и культурой земледелия. В процессе статистического анализа важнейших качественных показателей сельского хозяйства, в частности урожайности, акцент сделан на особенностях применения статистических методов в сельском хозяйстве и обеспечении комплексности их использования. Освоение методов получения и анализа показателей урожайности.

Можно выделить следующие показатели урожая:

· виды на урожай;

· урожай на корню;

· фактический урожай.

Видовой урожай - это ожидаемый урожай при данном конкретном состоянии посевов в предположении, что условия последующего выращивания культуры будут нормальными, средними. Это оценка состояния растений с точки зрения возможной их продуктивности, знание которой важно для организации ухода за растениями, уборки, использования продукции. Определение видового урожая может проводится многократно в зависимости от потребности в период вегетации растений. На ранних стадиях вегетации оценка заключается в качественной характеристике состояния посевов на отдельных участках: отличные, хорошие, средние, плохие и в исчислении средневзвешенных оценок всего посева культуры или группы однородных культур. На более поздних стадиях, при оценке видов на урожай, применяют количественные характеристики, используя регрессивный метод анализа и прогноза. По фактическим массовым данным за прошлые годы изучают связь урожайности с показателями состояния растения на определенное время (высота, густота, кустистость и др.) а также с наиболее существенными показателями метеоусловий и рассчитывают ожидаемый урожай со всей площади.

Урожай на корню - это урожай культуры перед началом уборки, реально существующий, но еще не убранный урожай (биологический урожай). В хозяйственной практике этот урожай определяется экспертно, а также инструментально двумя путями:

1. Путем выборочной уборки всего урожая без потерь на небольших площадях и его взвешивания.

2. Путем выборочного определения числа растений и веса продукции с одного растения, произведение которых дает величину урожая. Вес продукции с одного растения может быть установлен прямым взвешиванием.

Урожай на корню может быть определен также прибавлением к фактическому сбору величины потерь. Потери определяются экспертно или инструментально выборочным методом. При уборке сахарной свеклы потери бывают от оставления корней или их частей в земле и на поверхности, от попадания корней или их частей в кучи ботвы, от неправильной обрезки корней от ботвы при комбайновой уборке, ручной очистке и доочистке. Существенные потери сахарной свеклы могут быть также от преждевременной уборки или от опоздания с уборкой и от увядания при неправильном полевом хранении.

Фактический сбор урожая (валовой сбор или амбарный урожай) определяют путем непосредственного взвешивания, обмера и подсчет продукции в период уборки и после ее завершения. Различают три показателя фактического сбора:

1. В первоначально оприходованном весе, полученном в процессе уборке культуры, т.е. с примесью сорняков, земли, повышенной влажностью. Это реальная категория собранного, перевезенного, оплаченного урожая на первой стадии его получения.

2. В весе после доработки, т.е. за вычетом отходов и усушки. Сейчас это основной показатель урожая.

3. В весе с пересчетом на стандартные показатели качества или в зачетном весе, принятом заготовительными организациями (в зависимости от вида культуры), [2].

При изучении урожая и урожайности статистика решает следующие задачи:

·обеспечение своевременного определения валового сбора и урожайности по культурам и группам культур;

·изучение динамики этих показателей; анализ факторов, влияющих на урожай и урожайность;

·изучение передового опыта и выявление резервов повышения урожая и урожайности .

Важной задачей статистики является изучение изменений анализируемых показателей во времени. Эти изменения можно изучать, если иметь данные по определенному кругу показателей на ряд моментов времени или за ряд промежутков времени, следующих друг за другом. Как отмечает А.А.Спирин [8], рядами динамики называют статистические данные, отображающие развитие изучаемого явления во времени

Ряд расположенных в хронологической последовательности значений статистических показателей, представляет собой временной (динамический) ряд. Каждый временной ряд состоит из двух элементов: во-первых, указываются моменты или периоды времени, к которым относятся приводимые статистические данные; во-вторых, приводятся те статистические показатели, которые характеризуют изучаемый объект на определенный момент или за указанный период времени.

Статистические показатели, характеризующие изучаемый объект, называют уровнями ряда. То есть вид ряда динамики зависит не только от характера показателей, оценивающих изучаемый объект, но и от того, дается ли показатель за какой-либо период или по состоянию на определенный момент времени. Статистические показатели, приводимые в динамическом ряду, могут быть абсолютными, относительными или средними величинами. [1]

Путем непосредственно суммирования первичных данных получают абсолютные показатели, которые характеризуют численность совокупности и объем (размер) изучаемого явления в конкретных границах времени и места.

Относительная величина характеризует изменение явления во времени и показывает во сколько раз увеличился ( или уменьшился) уровень показателя по сравнению с каким-либо предшествующим периодам.

Средняя величина – обобщающая характеристика изучаемого признака в исследуемой совокупности.

В статистике различают следующие показатели ряда динамики:

1. Абсолютный прирост.

Как отмечает Елисеева И.И. [9],абсолютный прирост- разница между сравниваемым уровнем и уровнем более раннего периода, принятым за базу сравнения. Если эта база непосредственно предыдущий уровень, показатель называется цепным, если за базу взят начальный уровень - базисным. Абсолютный прирост показывает насколько увеличивается или уменьшается изучаемое явление. Этот показатель может быть рассчитан двумя способами:

Цепной абсолютный прирост - разность между каждым последующим уровнем ряда динамики.

Базисный абсолютный прирост - разность между каждым последующим и начальным уровнем ряда динамики, который принят за базу сравнения.

2. Темп роста.

Этот показатель представляет собой отношение сравниваемого уровня ( более позднего) к уровню, принятому за базу сравнения (более раннему). Темп роста показывает, как быстро изменялось изучаемое явление. Этот показатель может быть рассчитан двумя способами:

Цепной темп роста – отношение между каждым последующим и предыдущим уровнем ряда динамики, выраженный в процентах.

Базисный темп роста - отношение между каждым последующим и начальным уровнем ряда динамики, который принят за базу сравнения также выраженный в процентах.

3. Темп прироста

Показывает насколько процентов уровень данного периода больше (или меньше) базисного уровня. Этот показатель может быть рассчитан двояко [1]

1. как отношение абсолютного прироста к уровню, принятому за базу сравнения или

2. как разность между темпом роста (в процентах) и 100%

4. Абсолютное значение 1% прироста

Значения цепных темпов прироста, рассчитанных каждый к свой базе, различаются не только числом процентов, но и величиной абсолютного изменения, составляющей каждый процент. Поэтому складывать или вычитать цепные темпы прироста нельзя. То есть абсолютное значение 1% прироста для каждого последнего года определяется путем деления предшествующего уровня ряда динамики на 100 процентов.

Уровни ряда динамики формируются под влиянием взаимодействия многих факторов, одни из которых, являющиеся основными, главными, определяют закономерность, тенденцию развития, другие - случайные - вызывают колебание уровней. Факторы влияния подразделяются на долговременные (тренды), кратковременные систематические, несистематические случайные. Основная закономерность развития явления - это общая тенденция в изменении уровней рядов, освобожденная от действия случайных факторов, для определения которой ряды динамики подвергаются обработке. Существует несколько методов обработки рядов динамики: метод укрупнения периодов, метод скользящей средней и аналитическое выравнивание. Такие методы обработки рядов называются сглаживанием или выравниванием рядов динамики. Рассмотрим три основных метода более подробно.

1. Метод укрупнения периодов - это простейший метод сглаживания уровней ряда, укрупнение интервалов времени, для которых определяется итоговое значение или средняя величина исследуемого показателя. Этот метод особенно эффективен, если первоначальные уровни ряда относятся к коротким промежуткам времени. Так как исходная информация приведена за 9 лет, то выравнивание следует проводить по трехлетиям.

2. Метод скользящей средней - схож с предыдущим, но в данном случае фактические уровни заменяются средними уровнями, рассчитанными для последовательно подвижных (скользящих) укрупненных интервалов. Скользящая средняя будет рассчитана по трехлетиям со сдвигом на 1 год вправо, т.к. ряд динамики расположен горизонтально.

3. Метод аналитического выравнивания заключается в замене эмпирических уровней теоретическими, которые рассчитаны по определенному уравнению, принятому за математическую модель тренда, где теоретические уровни рассматриваются как функция времени. Задача аналитического выравнивания сводится к следующему: определение на основе фактических данных вида функции, нахождение по эмпирическим данным параметров указанной функции, расчет по найденному уравнению теоретических уровней.

В данном курсовом проекте использовался индексный анализ средней урожайности валового сбора сахарной свеклы. Рассмотрим поподробнее данный метод.

В практике статистики индексы наряду со средними величинами являются наиболее распространенными статистическими показателями.

Индекс представляет собой относительную величину, получаемую в результате сопоставления уровней сложных социально-экономических показателей во времени, в пространстве или с планом [1].Другие авторы под индексом понимают показатель сравнения двух состояний одного и того же явления ( простого и сложного, состоящих из соизмеримых и несоизмеримых элементов),[9]. С помощью индексов характеризуется развитие национальной экономики в целом и ее отдельных отраслей, анализируются результаты производственно-хозяйственной деятельности предприятий и организаций, исследуется роль отдельных факторов в формировании важнейших экономических показателей, выявляются резервы производства.

В развитии индексной теории в нашей стране сложились два направления: обобщающее, или синтетическое, и аналитические. Различие между этими направлениями обусловлено двумя возможностями интерпретации индексов в их приложении.

Обобщающее, или так называемое синтетическое, направление трактует индекс как показатель среднего изменения уровня изучаемого показателя. В аналитической теории индексы - это показатели изменения уровня результативной величины под влиянием изменения индексируемой величины .

Таким образом, с помощью индексных показателей решаются следующие основные задачи:

1) характеристика общего изменения сложного экономического показателя или формирующих его отдельных показателей-факторов;

2) выделение в изменении сложного показателя влияния одного из факторов путем элиминирования влияния других факторов;

3) обособления влияния изменения структуры явления на индексируемую величину.

Все экономические индексы можно классифицировать по следующим признакам:

1. степени охвата явления: индивидуальные и сводные (общие),

2. базе сравнения: динамические (базисные и цепные) и территориальные,

3. виду весов (соизмерения): с постоянными и переменными весами,

4. в зависимости от формы построения: агрегатные и средние (арифметические и гармонические),

5. характеру объектов исследования: индексы количественных показателей и качественных,

6. по составу явления: индексы постоянного (фиксированного) состава и переменного состава,

7. по периоду исследования: годовые, квартальные, месячные и недельные.

Основными индексами являются индивидуальные и общие. Индивидуальные индексы характеризуют изменения отдельных единиц статистической совокупности. Общие индексы выражают сводные (обобщающие) результаты совместного изменения всех единиц, образующих статистическую совокупность. В экономических расчетах чаще всего используются общие сводные индексы, характеризующие изменение совокупности в целом, их построение и являются содержанием индексной методологии. Общие индексы рассчитываются для количественных и качественных показателей. В зависимости от целей исследования и наличия исходных данных используют различные формы построения общих индексов: агрегатную и средневзвешенную.

Агрегатный индекс - это относительный показатель, который характеризует средние изменения социально-экономического явления, состоящего из соизмеримых элементов. Особенностью этой формы индекса является непосредственное сравнение двух сумм одноименных показателей. В настоящее время это наиболее распространенная форма индексов. Числитель и знаменатель агрегатного индекса представляет собой сумму произведения двух величин, одна из которых меняется, а другая остается неизменной в числителе и знаменателе (вес индекса). Вес индекса - это величина, служащая для соизмерения индексируемых величин. Индексируемой величиной называется признак, изменение которого изучается.

В данной курсовой работе для выявления взаимосвязей между факторами мы использовали метод аналитической группировки.

Группировкой называется процесс расчленения, а затем образования однородных групп с целью выделения типов, изучения структуры и взаимосвязи общественных явлений. В других источниках встречается несколько иная интерпретация группировки. Группировка- распределение единиц по группам в соответствии со следующим принципом: различия между единицами, отнесенными к одной группе, должны быть меньше, чем между единицами, отнесенными к разным группам,[9].

При применении метода группировок необходимо решать следующие методологические проблемы:

1. выбор группировочного признака или их комбинации;

2. определение числа групп и величины интервалов группировки;

3. установление применительно к конкретной группировке состава тех показателей, которыми должны характеризоваться выделенные группы;

4. составление макета таблицы, в которой должны быть представлены результаты группировки

Статистические группировки делятся на типологические, структурные и аналитические.

Типологическая группировка - это разделение исследуемой совокупности на классы, социально-экономические типы, однородные группы единиц в соответствии с изучаемыми признаками. Методология типологических группировок определяется тем, на сколько ясно выступают качественные отличия в изучаемых явлениях. При проведении этой группировки основное внимание должно быть уделено идентификации типов социально-экономических явлений. Типологическая группировка может быть построена:

1. по качественному признаку

2. по количественному признаку.

Типологическая группировка как правило производится по результативному признаку, к которому относится: урожайность сельскохозяйственных культур, продуктивность сельскохозяйственных животных и уровень производительности труда.

Структурная группировка - это группировка, в которой происходит разделение однородной совокупности на группы, характеризующие ее структуру по какому-либо варьирующему признаку. Изучение структуры общественных явлений возможно в динамике, что позволяет выявить структурные сдвиги закономерности с развитыми общественными явлениями. Структурные группировки позволяют подробно изучить население по полу и возрасту, явления в пределах отдельных территорий или на различных территориях.

С помощью аналитических группировок выявляются взаимосвязи между признаками общественных явлений. Эти группировки включают взаимосвязанные признаки, которые делятся на:

1. факторные, т.е. вызывающие изменения другого признака;

2. результативные, изменяющиеся под влиянием факторного признака.

Если с изменением факторного признака изменяется результативный, то между ними имеется зависимость.

Метод группировок - один из важнейших методов статистики, без которого немыслимо изучение массовых явлений.

Для решения поставленной нами задачи необходимо использовать аналитическую группировку.

Для исследования зависимости между явлениями используют аналитические группировки. При их построении можно установить взаимосвязь между двумя признаками и более. При этом один признак будет результативным, а другой факторным. Если с изменением факторного признака изменяется результативный, то между ними имеется зависимость.

Для оценки существенности зависимости, обнаруженной методом группировки исходя из предыдущей главы, можно провести однофакторный дисперсионный анализ.

По данным экономико –математического словаря [21], дисперсионный анализ [variance analysis] — раздел математической статистики, посвященный методам выявления влияния отдельных факторов на результат эксперимента (физического, производственного, экономического эксперимента). Дисперсионный анализ возник как средство обработки результатов агрономических опытов, с помощью которых выявлялись наиболее благоприятные условия для сортов сельскохозяйственных культур.

При этом исходят из положения о том, что существенность фактора в определенных условиях характеризуется его вкладом в дисперсию результата. Английский статистик Р. Фишер, разработавший этот метод, определил его как “отделение дисперсии, приписываемой одной группе причин, от дисперсии, приписываемой другим группам”

Анализ производится следующим образом. Сначала группируют совокупность наблюдений по факторному признаку, находят среднее значение результата и дисперсию по каждой группе. Затем определяют общую дисперсию и вычисляют, какая доля ее зависит от условий, общих для всех групп, какая — от исследуемого фактора, а какая — от случайных причин. И наконец, с помощью специального критерия определяют, насколько существенны различия между группами наблюдений и, следовательно, можно ли считать ощутимым влияние тех или иных факторов.

Ефимова М.П выделяет следующее определение [1], дисперсионный анализ представляет собой метод статистической оценки надежности проявления зависимости результативного признака от одного или нескольких факторов.

Он включает в себя:

1. установление основных источников варьирования результативного показателя и объем вариации по источникам образования.

2. вычисление дисперсии.

3. анализ, на основе которого формируется вывод.

Общественные явления находятся под воздействием различных факторов. Однако влияние факторов различно. Влияние одних существенно, а других несущественно. Основной характеристикой существенности влияния фактора на результат является критерий Фишера (F).

Корреляционно-регрессионный анализ.

Исследование объективно существующих связей между явлениями - это важнейшая задача общей теории статистики. В процессе статистического исследования зависимостей вскрываются причинно-следственные отношения между явлениями, что позволяет выявлять факторы, которые оказывают основное влияние на вариацию изучаемых явлений и процессов.

Корреляционно-регрессионный анализ - это установление формы связи, количественное измерение влияния фактора на результат, измерение тесноты связи и меры воздействия каждого фактора на результат.

Признаки по их назначению для изучения взаимосвязи делятся на два класса:

1. факторные - это признаки, обуславливающие изменение других, связанных с ними признаков.

2. результативные - это признаки, изменяющиеся под действием факторных признаков.

В природе и обществе явления и процессы связаны друг с другом и зависят друг от друга. Связи и зависимости могут быть функциональными и корреляционными.

Корреляционной называется связь, при которой каждому значению признака (факторному) соответствует несколько значений другого признака (результативного) и между изменением факторного и результативного признака нет полного соответствия, воздействие отдельных факторов проявляется лишь в среднем при массовом наблюдении фактических данных. Как отмечает О.Э. Башина [8], корреляционной связью называют важнейший частный случай статистической связи, состоящей в том, что разным значениям одной переменной соответствуют различные средние значения другой

Функциональной называется связь, при которой определенному значению признака (факторного) всегда соответствует один или несколько определенных значений другого признака (результативного). Она характеризуется полным соответствием между изменением факторного признака и изменениями результативной величины, [1].

Связи можно классифицировать на следующие группы:

1. по направлению связи бывают прямыми или обратными. При прямой связи с увеличением или уменьшением значения факторного признака происходит увеличение или уменьшение значения результативного. В случае обратной связи значение результативного признака изменяется под воздействием факторного, но в противоположном направлении по сравнению с изменением последнего.

2. по аналитическому выражению связи делятся на прямолинейные (линейные) и криволинейные (нелинейные). Если статистическая связь между явлениями может быть приближенно выражена уравнением прямой линии, то ее называют линейной связью. Если она выражается уравнением какой-либо кривой линии (парабола, гипербола, степенная и др.), то такую связь называют нелинейной.

Для выявления наличия связи, ее характера и направления в статистике используются следующие методы:

1. анализ параллельных рядов;

2. аналитические группировки;

3. графический метод;

4. метод корреляции.

Корреляция - это статистическая зависимость между случайными величинами, не имеющими строгого функционального характера, при которой изменение одной из них приводит к изменению математического ожидания другой.

В статистике принято различать следующие варианты зависимостей:

1. парная корреляция - это связь между двумя признаками результативным и факторным;

2. частная корреляция - это зависимость между результативным и одним из факторных признаков при фиксированном значении других факторных признаков;

3. множественная корреляция - это зависимость результативного и двух или более факторных признаков, включаемых в исследования.

Корреляционный анализ - это количественное определение тесноты связи между двумя признаками (при парной связи) и между результативным и множеством факторных признаков (при многофакторной связи).

Для того чтобы результаты корреляционного анализа нашли практическое применение и дали желаемый результат, должны выполняться определенные требования в отношении отбора объекта исследования и признаков-факторов. Одним из важнейших условий правильного применения методов корреляционного анализа является требование однородности тех единиц, которые подвергаются изучению методами корреляционного анализа, количественная оценка однородности и достаточное число наблюдений, [1].

1.2 Необходимость производства сахарной свеклы в народном хозяйстве. Анализ урожая и урожайности сахарной свеклы в РФ и по Воронежской области

Еще за 2000 лет до н. э. ассирийцы, вавилоняне, персы знали свеклу как овощное и лекарственное растение. Культурное возделывание ее началось не позднее чем за 1000 лет до н. э.

На Руси свекла известна примерно с X - XI веков. Предполагается, что свой славный путь по Руси свекла начала из Киевского княжества. Отсюда она проникла на новгородскую, московскую земли, в Польшу и Литву. Повсеместное распространение в России свекла наряду с репой и капустой получила в XIV веке.

Большая заслуга по распространению и культивированию столовой свеклы в России принадлежит замечательным русским естествоиспытателям, агрономам - селекционерам Болотову и Грачеву. Подлинным центром выращивания свеклы всегда была Украина. Об этом свидетельствует, в частности, анкетный опрос, проведенный в 1766 году.

Промышленное выращивание сахарной свеклы больше развито в умеренных широтах, но расширяется и в субтропиках. Сахарная свекла возделывается на площади более 9 млн. га (из них 80% — в Европе).

Ведущие страны по площади посева сахарной свеклы — Марокко, Египет, Алжир, Тунис, США, Канада, Чили, Уругвай, Китай, Россия, Турция, Иран, Япония, Сирия, Франция, Польша, Италия, Румыния. Урожайность сахарной свеклы некоторых стран можно изучить в Приложение 1.

Рассмотрим динамику валового сбора и урожайности сахарной свеклы в Воронежской области и по России в целом.

Рассмотрим динамику валового сбора сахарной свеклына примере Российской Федерации за 2002-2007 гг.

Таблица 1.Динамика валового сбора сахарной свеклы на примере Российской Федерации за 2002-2007 гг.
Годы Валовой сбор сахарной свеклы, тыс.т. Абсолютный прирост, ц Темп роста, % Темп прироста, % Абсолютное значение 1% прироста, тыс.т
цепной базисный цепной базисный цепной базисный
2002 15700
2003 19400 3700 3700 123,57 123,57 23,57 23,57 157
2004 21800 2400 6100 112,37 138,85 12,37 38,85 194
2005 21400 -400 5700 98,17 136,31 -1,83 36,31 218
2006 30900 9500 15200 144,39 196,82 44,39 96,82 214
2007 28835 -2065 13135 93,32 183,66 -6,68 83,66 309

Анализируя данные в Таблице 1, можно сделать следующий вывод - рассмотренные цепные показатели ряда динамики говорят о неустойчивости урожайности сахарной свеклы. Так объем валового сбора увеличивались с 2002 по 2004 гг.., соответственно, темпы роста также увеличились с 181,55 % в 2002г до 112,81% в 2003 г. Примерно такая же ситуация с ростом валового сбора и с увеличением темпов роста прослеживается в 2004 и 2005 годах. А в 2006 году наблюдается резкое снижение валового сбора с 127199 ц. в 2005 до 96257 ц. в 2006.

На основе проделанных расчетов можно сделать выводы о состоянии среднегодовых показателей динамики валового сбора сахарной свеклы по России в целом. Валовой сбор характеризуется относительной неустойчивостью.

Абсолютный прирост, рассчитанный цепным способом, показывает, что максимальное увеличение было в 2006 году и составило 9500 тыс.т. по сравнению с 2001 годом, а минимальное увеличение в 2001 году - 5863 ц по сравнению с предыдущими годами, а наименьшее увеличение в 2004 г. по сравнению с 2003г. Абсолютный прирост, рассчитанный базисным способом, также имел максимальное увеличение в 2006 году и составил 15200 тыс.т по сравнению с предыдущим годами.

Темп роста по цепному способу свидетельствует о том, что в 2006 году валовой сбор сахарной свеклы составил 144,39 по сравнению с 2005 годом, а в 2005 году 98,17% по сравнению с 2004 годом. Темп роста по базисному способу характеризует, что валовой сбор в 2006 году также отражает наивысший процент 196,82% по сравнению с предыдущем годом и наиментший процент в 2003 г. 123,57%.

Темп прироста, рассчитанный цепным способом, свидетельствует о том, что в 2006 году валовой сбор сахарной свеклы увеличился на 44,39% по сравнению с 2005 годом, а в 2003 году минимальный прирост составил 23,57% по сравнению с 2002 годом.

По базисному способу на протяжении шести лет (2002-2007 гг.) наблюдается увеличение валового сбора, по сравнению с базисным 2002 годом. Максимальный прирост отмечается в 2006 г., который составил 30900 или 96,82%, наименьший прирост наблюдается в 2003г. составил 19400 или 23,57%.

Особое внимание на себя обращает такой показатель как Абсолютное значение 1% прироста.

С 2003 по 2007 гг. происходит равномерное увеличение значения данного показателя. В 2005 и 2007 гг. увеличение валового сбора на 1% был равносильно увеличению на 218 тыс.т. и 309 тыс.т соответственно.

В целях подтверждения изложенных выводов динамика данного изучаемого явления изобразим графически в виде линейной диаграммы.

статистический динамика аналитический корреляционный


Рисунок 2. Динамика валового сбора сахарной свеклы на примере Российской Федерации за 2002-2007 гг.

Построенный график подтверждает неустойчивость валового сбора.

Так с 2002 по 2004 гг. прослеживается планомерное увеличение валового сбора сахарной свеклы, а в 2005 производство сахарной свеклы немного уменьшилось, в 2006 году достигло максимального показателя (по сравнению с предыдущими годами), а в 2007 г. показатель незначительно снизился.

Теперь рассмотрим динамику валового сбора сахарной свеклына примере Воронежской области за 2002-2007 гг. (по всем хозяйствам).

Таблица 2. Динамика валового сбора сахарной свеклы на примере Воронежской области за 2002-2007 гг.
Годы Валовой сбор сахарной свеклы, тыс.т. Абсолютный прирост, ц Темп роста, % Темп прироста, % Абсолютное значение 1% прироста, тыс.т
цепной базисный цепной базисный цепной базисный
2002 2261
2003 3301 1040 1040 146,00 146,00 46,00 46,00 22,61
2004 2899 -402 638 87,82 128,22 -12,18 28,22 33,01
2005 2945 46 684 101,59 130,25 1,59 30,25 28,99
2006 3182 237 921 108,05 140,73 8,05 40,73 29,45
2007 3492 310 1231 109,74 154,44 9,74 54,44 31,82

Анализируя данные можно сделать следующие выводы: в целом по Воронежской области прослеживается увеличение валового сбора ( с 2004 по2007гг) ,с 2003 г. по 2004 наблюдается спад валового сбора. Об этом свидетельствуют и темп роста и темп прироста.

В целях подтверждения изложенных выводов динамика данного изучаемого явления изобразим графически в виде линейной диаграммы.

Рисунок 3. Динамика валового сбора сахарной свеклы на примере на примере Воронежской области за 2002-2007 гг. (по всем хозяйствам).

Построенный график подтверждает неустойчивость валового сбора.

Так с 2002 по 2003 гг. прослеживается увеличение валового сбора сахарной свеклы, а с 2003 по 4004 производство сахарной свеклы немного уменьшилось, с 2004 по 2007 гг. прослеживается увеличение валового сбора сахарной свеклы.

Динамика урожайности сахарной свеклы за 9 лет.

Проанализируем динамику изменения урожайности сахарной свеклы в целом по РФ.

На основе данных таблицы 3 можно сделать следующий вывод. Урожайность сахарной свеклы отличается неустойчивостью и имеет цикличный характер, резко повышаясь до 361 ц/га в 2005 году и резко понижаясь до 325 ц/га в 2006 году. Темп роста, рассчитанный цепным способом, свидетельствует о том, что максимальное повышение урожайности сахарной свеклы до 130,32% было в 2005 году, по сравнению с остальными годами, а минимальное повышение было в 2006 году до 90,03% по сравнению с 2005 годом.

Таблица 3. Динамика урожайности сахарной свеклы за 9 лет по РФ ( в хозяйствах всех категорий).

Годы Урожайность сахарной свеклы, ц/га. Темп роста, %
цепной базисный
1991-1995 179
1996-2000 177 98,88 98,88
2001 199 112,43 111,17
2002 219 110,05 122,35
2003 227 103,65 126,82
2004 277 122,03 154,75
2005 361 130,32 201,68
2006 325 90,03 181,56
2007 291 89,54 162,57

Темп роста, рассчитанный базисным способом показывает, что рост урожайности сахарной свеклы также был максимальным в 2005 году и составил 201,68 %, а за период 1996-2000 был минимальным и составил 98,88 %. Из расчетов видно, что более благоприятные условия для выращивания сахарной свеклы в этом хозяйстве были в 2005 году о чем свидетельствует наибольшая урожайность, а самые худшие условия для выращивания были в период 1996-2000, когда урожайность получилась почти в 2 раза ниже, чем в 2005 году.

Рассмотрим обобщающие показатели ряда динамики:

а) средний абсолютный прирост

(ц/га);

б) средний темп роста


или 106,26%;

в) средний темп прироста

= 106,26% - 100% = 6,26%.

Средние показатели ряда динамики свидетельствуют о том, что ежегодно в течение изучаемого периода урожайность сахарной свеклы увеличивалась на 14 ц/га или на 6,26%.

Проанализируем динамику изменения урожайности сахарной свеклы на примере Воронежской области.

Таблица 4. Динамика урожайности сахарной свеклы за 9 лет по Воронежской области (в хозяйствах всех категорий)

Годы Урожайность сахарной свеклы, ц/га Темп роста, %
цепной базисный
1999 193
2000 169 87,56 87,56
2001 180 106,51 93,26
2002 187 103,89 96,89
2003 245 131,02 126,94
2004 241 98,37 124,87
2005 281 116,60 145,60
2006 318 113,17 164,77
2007 295 92,77 152,85

Данные таблицы 4 показывают, что цепные показатели ряда динамики говорят о неустойчивости урожайности сахарной свеклы.

С 1999 по 2000 г прослеживается спад урожайности на 24ц/га. С 200г. по 2003 наблюдается увеличение урожайности. С 2004 по 2006 урожайность сахарной свеклы резко увеличивается, и составляет 241ц/га, 281 ц/га и 318ц/га соответственно. А в 2007 г. опять прослеживается снижение. Таким образом, на протяжении рассматриваемого периода наблюдаются частые колебания в урожайности сахарной свеклы.

Рассмотрим обобщающие показатели ряда динамики:

г) средний абсолютный прирост

(ц/га);

д) средний темп роста

или 105,45%;

е) средний темп прироста

= 105,45% - 100% = 5,45%.

Средние показатели ряда динамики свидетельствуют о том, что ежегодно в течение изучаемого периода урожайность сахарной свеклы увеличивалась на 12,75 ц/га или на 5,45%.

Таким образом, показатели урожая и урожайности в Воронежской области по России в целом носят неустойчивый характер. Как мы можем заметить, валовой сбор не всегда зависит от урожайности и наоборот. Это во многом обусловлено агрометеорологическими условиями, размерами посевных площадей, ненормированным количеством минеральных удобрений, недостаток гербицидов и многими другими факторами.

2. Анализ рядов динамики

В рамках курсового проекта в соответствии с задачами статистико-экономического анализа производства сахарной свеклы на начальном этапе исследования было проведено изучение ряда динамики валового сбора сахарной свеклыв ЗАО "Землянское" Семилукского района за период с 2001 по 2006 гг. В качестве показателей, характеризующих тенденцию, использовались:

1. абсолютный прирост;

2. темп роста;

3. темп прироста;

4. абсолютное значение 1% прироста.

2.1 Динамика валового сбора сахарной свеклы за 6 лет в ЗАО "Землянское" Семилукского района

Рассмотрим динамику валового сбора сахарной свеклы в ЗАО "Землянское" Семилукского района за период с 2001 по 2006 гг.

Таблица 5.Динамика валового сбора сахарной свеклы на примере ЗАО "Землянское" Семилукского района за 2001-2006 гг.
Годы Валовой сбор сахарной свеклы, ц. Абсолютный прирост, ц Темп роста, % Темп прироста, % Абсолютное значение 1% прироста, ц
цепной базисный цепной базисный цепной базисный
2001 31460
2002 57116 25656 25656 181,55 181,55 81,55 81,55 314,6
2003 70145 13029 38685 122,81 222,97 22,81 122,97 571,16
2004 98672 28527 67212 140,67 313,64 40,67 213,64 701,45
2005 127199 28527 95739 128,91 404,32 28,91 304,32 986,72
2006 96257 -30942 64797 75,67 305,97 -24,33 205,97 1271,99

Анализируя данные в Таблице 5, можно сделать следующий вывод - рассмотренные цепные показатели ряда динамики говорят о неустойчивости урожайности сахарной свеклы. Так объем валового сбора в 2002 году увеличился на 25656 ц. В 2003 году также происходит увеличение валового сбора, который составил 70145 ц., соответственно, темпы роста также увеличились с 181,55 % в 2002г до 112,81% в 2003 г. Примерно такая же ситуация с ростом валового сбора и с увеличением темпов роста прослеживается в 2004 и 2005 годах. А в 2006 году наблюдается резкое снижение валового сбора с 127199 ц. в 2005 до 96257 ц. в 2006.

На протяжении шести лет (2001-2006 гг.) наблюдается увеличение валового сбора, по сравнению с базисным 2001 годом. Максимальный прирост отмечается в 2005 г., который составил 95739 или 304,32%, наименьший прирост наблюдается в 2002 г. составил 25656 или 181,55%.

Особое внимание на себя обращает такой показатель как Абсолютное значение 1% прироста. С 2002 по 2006 гг. происходит равномерное увеличение значения данного показателя. В 2004 и 2006 гг. увеличение валового сбора на 1% был равносильно увеличению на 701,45 ц. и 1271,99 ц. соответственно.

В целях подтверждения изложенных выводов динамика данного изучаемого явления изобразим графически в виде линейной диаграммы.

Рисунок 4. Динамика валового сбора сахарной свёклы в ЗАО "Землянское" Семилукского района за 2001-2006 гг.


Построенный график подтверждает неустойчивость валового сбора.

Так с 2001 по 2005 гг. прослеживается планомерное увеличение валового сбора сахарной свеклы, а в 2006 производство сахарной свеклы резко уменьшилось.

В связи с неравномерностью роста валового сбора целесообразно рассмотреть обобщающие показатели ряда динамики:

а) средний абсолютный прирост

(ц.);

- конечный уровень ряда динамики

-начальный уровень ряда динамики

n- количество уровней

б) средний темп роста

или 125,064%;

в) средний темп прироста

=125,064% - 100% = 25,064 %.

Таким образом, средние показатели ряда динамики свидетельствуют о том, что, несмотря на резкое, выходящее из общей тенденции, снижение валового сбора в 2006г., ежегодно в течение изучаемого периода валовой сбор сахарной свеклы в ЗАО «Землянское» увеличивается на 12959,4 ц. или на 25,064 %.

Основные факторы, определяющие размер валового сбора

а) урожайность;

б) размер и структура посевной площади

Решающим из перечисленных факторов является урожайность сахарной свеклы.

2.2. Динамика урожайности сахарной свеклы за 9 лет в ЗАО "Землянское" Семилукского района

Рассмотрим динамику урожайности сахарной свеклы в ЗАО "Землянское" Семилукского района за 9 лет.

Таблица 5. Динамика урожайности сахарной свеклы за 9 лет
Годы Урожайность сахарной свеклы, ц/га Темп роста, %
цепной базисный
1998 191,1 - -
1999 203,2 106,33 106,33
2000 175 86,12 91,58
2001 174,8 99,89 91,47
2002 230 131,58 120,36
2003 305 132,61 159,60
2004 346,2 113,51 181,16
2005 374,1 108,06 195,76
2006 320,9 85,78 167,92

Данные таблицы 5 показывают, что цепные показатели ряда динамики говорят о неустойчивости урожайности сахарной свеклы.

С 1998 по 1999 г наблюдается увеличение урожайности на 12,1 ц/га, с 2000 по 2001 гг. прослеживается спад урожайности и составляет 175 ц/га и 174,8 ц/га соответственно, а с 2002 по 2005 гг. урожайность сахарной свеклы резко увеличивается, и составила 230 ц/га ,305 ц/га, 346,2 ц/га., 374,1ц/га. соответственно. В 2006 г. урожайность упала, по сравнению с 2005 г. на 53,2 ц/га. Таким образом, на протяжении рассматриваемого периода наблюдаются частые колебания в урожайности сахарной свеклы.

Рассмотрим обобщающие показатели ряда динамики:

ж)средний абсолютный прирост

(ц/га);

з) средний темп роста

или 106,69%;

и) средний темп прироста

= 106,69% - 100% = 6,96%.

Средние показатели ряда динамики свидетельствуют о том, что ежегодно в течение изучаемого периода урожайность сахарной свеклы увеличивалась на 16,23 ц/га или на 6,96%.

Для более детального изучения динамики урожайности сахарной свеклы используем такие статистические методы как укрупнение периодов , расчет скользящей средней и аналитическое выравнивание.

2.3 Выявление общей тенденции в рядах динамики

Для более детального изучения динамики урожайности сахарной свеклы используем такие статистические методы как укрупнение периодов , расчет скользящей средней и аналитическое выравнивание.

Таблица 6. Фактическая и выровненная урожайность сахарной свеклы на примере ЗАО "Землянское" Семилукского района.
Годы Урожайность сахарной свеклы, ц/га Укрупнение периодов Скользящая средняя Аналитическое выравнивание
Сумма за трехлетие средняя урожайность за трехлетие сумма за трехлетие Средняя скользящая урожайность за трехлетие t t2 yt y(t)= 257,8+25,1*t
1998 191,1 -4 16 -764,4 157,4
1999 203,2 569,3 189,77 569,30 189,77 -3 9 -609,6 182,5
2000 175 553,00 184,33 -2 4 -350 207,6
2001 174,8 579,80 193,27 -1 1 -174,8 232,7
2002 230 709,8 236,60 709,80 236,60 0 0 0 257,8
2003 305 881,20 293,73 1 1 305 282,9
2004 346,2 1025,30 341,77 2 4 692,4 308
2005 374,1 1041,2 347,07 1041,20 347,07 3 9 1122,3 333,1
2006 320,9 4 16 1283,6 358,2
Итого 2320,3 0 60 1504,5 2320,2

Из приведенных данных следует, что урожайность колеблется, отсутствует устойчивость в динамике.

Для выявления общих тенденций развития урожайности произведем выравнивание, применив следующие методы.

Так как исходная информация приведена за 9 лет, то выравнивание следует производить по трехлетиям.

Для этого выполним следующие действия:

а) определим сумму урожайности по трехлетиям

1998-2000: 191,1 + 203,2 + 175 = 569,3

2001-2003: 174,8 + 230 + 305 = 709,8

2004-2006: 346,2 + 374,1 + 320,9 = 1041,2


б) определяется средняя урожайность по каждому трехлетию как простая арифметическая

1998-2000: 569,3 : 3 = 189,77

2001-2003: 709,8 : 3 = 236,60

2004-2006: 1041,2 : 3 = 347,07

Рассчитанные показатели выявили тенденцию развития урожайности, а именно ее увеличение, но их недостаточно (всего три средних величины).

Для надежных выводов о тенденции развития урожайности используем другой метод.

II. Расчет скользящей средней.

Рассчитаем скользящую среднюю по трехлетиям, которые будут образовываться со сдвигом на один год вправо. Для этого произведем следующие операции:

а) определим сумму урожайности по трехлетиям:

1998 – 2000: 191,1 + 203,2 + 175 = 569,30

1999 – 2001: 203,2 + 175 + 174,8 = 553,00

2000 – 2002: 175 + 174,8 + 230 = 579,8

2001 – 2003: 174,8 + 230 + 305 = 709,80

2002 – 2004: 230 + 305 + 346,2 = 881,20

2003 – 2005: 305 + 346,2 + 374,1 = 1025,30

2004 – 2006: 346,2 + 374,1 + 320,9 = 1041,20

б) определим среднюю скользящую урожайность по каждому трехлетию как простую арифметическую:

1998 – 2000: 569,30: 3= 189,77

1999 – 2001: 553,00: 3 = 184,33

2000 – 2002: 579,8: 3 = 193,27

2001 – 2003: 709,80: 3 = 236,60

2002 – 2004: 881,20: 3 = 293,73

2003 – 2005: 1025,30: 3 = 341,77

2004 – 2006: 1041,20: 3 = 347,07

Полученные показатели выявили некоторую закономерность в развитии урожайности сахарной свеклы. Приведенные данные в таблице 3 говорят о том, что укрупнение периодов выявили тенденции увеличения урожайности. Для наиболее точного результата рассмотрим еще один метод.

Для аналитического выравнивания первоначально берется уравнение прямой

y ( t ) = a 0 1 * t , где

y(t)- теоретическое значение урожайности за каждый год

t- условное обозначение периода времени

a0 , а1 - неизвестные параметры

Для нахождения неизвестных параметров решается система уравнений

Подставим значения таблицы в систему уравнений

9+ 0=2320,3; = 257,8;

0+60=1504,5. =25,1.


Подставим найденные значения параметров , в уравнение прямой и найдем его конкретное выражение

Y(t)=257,8+25,1t

Параметр свидетельствует о том, что ежегодно в течение изучаемого периода урожайность сахарной свеклы повышалась на 25,1 ц/га.

Подставив значение t в уравнение прямой, определим теоретическое значение урожайности за каждый год.

Изобразим графически динамику урожайности сахарной свеклы ,использовав методы: укрупнение периодов , расчет скользящей средней и аналитическое выравнивание.

Рисунок 5. Фактическая и выровненная урожайность сахарной свеклы в ЗАО "Землянское" Семилукского района.

Таким образом, выровненный ряд урожайности сахарной свеклы говорит о его систематическом увеличении с годовым увеличением на 25,1 ц/га.

При аналитическом выравнивании динамика общественных явлений может быть использована не только уравнение прямой, но и ряд функций, таких как парабола, экспоненциальная, степенная.

Для выявления тенденций изменения урожайности сахарной свеклы проведем выравнивание по урожайностям линейной, квадратичной, экспоненциальной, и степенной функции и с использованием пакета прикладных программ « Statgraf » на основе Приложение 2.

Таблица 2. Фактическая и выровненная урожайность сахарной свеклы в ЗАО "Землянское" Семилукского района.

Годы Урожайность сахарной свеклы, ц/га Выровненная урожайность сахарной свеклы по уравнению:
Линейной функции Квадратичной функции Экспоненциальной функции Степенной функции
1998 191,1 157,511 172,166 167,73 160,687
1999 203,2 182,586 186,25 184,831 220,068
200 175 207,661 203,473 203,677 244,39
2001 174,8 232,736 223,838 224,444 257,541
2002 230 257,811 247,342 247,329 265,769
2003 305 282,886 273,988 272,546 271,399
2004 346,2 307,961 303,773 300,958 275,494
2005 374,1 333,036 336,7 330,958 278,606
2006 320,9 356,111 372,76 364,703 281,05

Из данной таблицы видно, что ежегодно урожайность сахарной свеклы повысилась по всем функциям.

Для наглядности представлений выровненных значений урожайности по уравнениям за период 1998-2006 гг. построим график (Приложение 3).

Рассчитаем прогнозируемые значения урожайности в ЗАО "Землянское" Семилукского района по уравнению аналитического выравнивания.


Таблица 3. Прогнозная урожайность сахарной свеклы в ЗАО "Землянское" Семилукского района.

Годы Прогнозные значения урожайности по ууравнениям функций
линейная функция квадратичная функция экспоненциальная функция степенная функция
2007 383,186 411,973 401,888 283,021
2008 408,261 454,321 442,865 284,644
2009 433,336 499,809 488,02 286,004

Данные прогнозы свидетельствуют о том, что урожайность имеет тенденцию роста по всем функциям.

Наибольший рост выявлен по уравнению квадратичной функции, так как здесь урожайность имеет максимальное значение в каждом изучаемом году.

Представим сводные характеристики полученных уравнений, на основании Приложение 4, в виде следующей таблицы.

Таблица 4. Характеристики уравнений выравнивания урожайности сахарной свеклы в ЗАО "Землянское" Семилукского района.

Функции M.E M.S.E M.A.E M.A.P.E M.P.E
Линейное отклонение Дисперсия Среднее квадратическое отклонение Коэффициент вариации Вероятность ошибки
Линейная 0,0000 1308,01 34,5821 14,721 -2,05574
Квадратичная 0,0000 1223,63 32,6048 13,1885 -1,92875
Экспоненциальная 2,6381 1267,49 33,6279 13,629 -1,03148
Степенная 7,2545 3442,81 52,7589 21,7931 -2,83798

Сложившимся условиям в хозяйстве наиболее отвечает уравнение квадратической функции

y(t)= 161,224+9,37262*T+1,57024*T^2

Так как в этом уравнении наименьшее среднее квадратическое отклонение (32,6848) , а коэффициент вариации не превышает 33%.

Прогнозная урожайность по данному урожаю более растет быстрыми темпами и к 2009 г. достигнет максимальной величины, следовательно, при составлении бизнес-плана необходимо ориентироваться на уравнение квадратичной функции.

Сравнение фактической и теоретической урожайности позволяет выявить резервы ее роста, который в свою очередь обеспечивает увеличение валового сбора.

3. Индексный анализ средней урожайности валового сбора сахарной свеклы

Имеется следующая исходная информация (Таблица 4).

Проведем индексный анализ средней урожайности валового сбора сахарной свеклы. Определим среднюю урожайность сахарной свеклы за каждый год по формуле средней арифметической взвешенной:

2005 год (ц/га)

2006год (ц/га)

(ц/га)

Определим общее изменение средней урожайности:

·Относительное изменение:

или 112,38%

·Абсолютное изменение:

(ц/га)

Следовательно, средняя урожайность сахарной свеклы в 2006 году по сравнению с 2005 годом увеличилась на 36,27 ц/га или 12,38%

На общее изменение средней урожайности оказывают влияние два фактора:

1. Изменение урожайности в отдельных хозяйствах района;

2. Изменение структуры посевных площадей.

Рассмотрим влияние урожайности в отдельных хозяйствах.

·Относительное влияние показывает общий индекс урожайности постоянного состава:

или 108,38%

Таблица 5. Площадь посева, валовой сбор и урожайность сахарной свеклы в ЗАО "Землянское" Семилукского района.
Наименование предприятия Площадь, га Урожайность, ц/га Валовой сбор, ц Структура посевных площадей, %
2005 2006 2005 2006 отчетный год Базисный год Отчетный год
2005 2006 условный 2005 2006
условные обозначения По П1 Уо У1 УоПо У1П1 УоП1 C=П0i /П0 *100% С=П1 i /П1 *100%
1 к-з им. К.Маркса Семилукского р-на 150 160 259,52 248,52 38929 39764 41524,27 1,9587 1,7502
2 СХА им. Ленина Семилукского р-на 310 310 307,29 307,29 95262 95262 95262,00 4,0481 3,3909
3 ЗАО "Землянское Семилукского р-на 340 300 374,11 320,86 127199 96257 112234,41 4,4398 3,2816
4 ООО "Лосево" Семилукского р-на 120 150 249,75 200,00 29970 30000 37462,50 1,5670 1,6408
5 ООО СП "Маяк" Семилукского р-на 100 200 272,47 126,64 27247 25328 54494,00 1,3058 2,1877
6 ООО"Агротех-гарант" Аннинского р-на 300 492 417,00 402,00 125105 197784 205172,20 3,9175 5,3818
7 ООО "Нива" Аннинского р-на 300 300 331,00 467,49 99300 140246 99300,00 3,9175 3,2816
8 СХА "Путь Ленина" Аннинского р-на 330 350 308,68 390,12 101866 136542 108039,69 4,3092 3,8285
9 ООО "Токай" Аннинского р-на 250 353 250,76 137,70 62690 48609 88518,28 3,2646 3,8613
10 СХА "Битюгское" Аннинского р-на 90 90 214,94 275,06 19345 24756 19345,00 1,1752 0,9845
11 СХА "Ясырки" Аннинского р-на 270 270 250,19 250,19 67551 67551 67551,00 3,5257 2,9534
12 СХА "Левашовка" Аннинского р-на 305 360 300,00 204,82 91500 73734 108000,00 3,9828 3,9379
13 CXA "Заря" Аннинского р-на 300 300 264,87 313,72 79460 94117 79460,00 3,9175 3,2816
14 СХА им. Ленина Аннинского р-на 450 400 456,24 607,63 205309 243050 182496,88 5,8762 4,3754
15 ЗАО "Николаевка" Аннинского р-на 350 350 464,47 644,41 162566 225542 162566,00 4,5704 3,8285
16 ООО "Славянский" Бутурлиновского р-на 584 826 335,65 306,32 134260 253024 277246,90 7,6260 9,0352
17 ООО"Агрошанс" Бутурлиновского р-на 400 300 77,87 300,38 45478 90116 23361,98 5,2233 3,2816
18 ООО "Славянский" Бутурлиновского р-на 584 826 229,89 306,32 134260 253024 189895,14 7,6260 9,0352
19 ООО"Нижнекисляйские семена" Бутурлиновского р-на 100 300 457,18 299,21 45718 89764 137154,00 1,3058 3,2816
20 ООО "Озерское" Бутурлиновского р-на 300 400 168,03 226,52 50408 90606 67210,67 3,9175 4,3754
21 ООО "Нива" Бутурлиновского р-на 150 170 148,62 104,40 22293 17748 25265,40 1,9587 1,8595
22 ООО "Семедесятская Нива" Хохольского р-на 400 400 185,41 420,00 74162 168000 74162,00 5,2233 4,3754
23 ООО "Юбилейное" Хохольского р-на 225 230 358,62 413,37 80689 95076 82482,09 2,9381 2,5159
24 ООО "Ленинская Нива" с. Староникольское Хохольского р-на 500 700 229,69 213,97 114849 149790 160788,60 6,5291 7,6570
25 ЗАО "Дон" Хохольского р-на 230 250 475,09 444,03 109272 111008 118773,93 3,0034 2,7346
26 ЗАО "Хохольское" Хохольского р-на 220 355 446,96 429,63 98332 152518 158672,09 2,8728 3,8832
Итого П0 = 7658 П1 = 9142

292,89

329,16

2243020 3009216 2776439,03 С=1 С=1

·Абсолютное изменение урожайности:

(ц/га)

За счет увеличения урожайности в отдельных хозяйствах (СХА "Путь Ленина" Аннинского р-на, СХА "Битюгское" Аннинского р-на,CXA "Заря" Аннинского р-на,ООО "Агрошанс" Бутурлиновского р-на,ООО "Озерское" Бутурлиновского р-на,ООО "Юбилейное" Хохольского р-на и другие) средняя урожайность сахарной свеклы повысилась на 36,27 ц/га или на 12,38%.

Рассмотрим влияние второго фактора, то есть изменение структуры посевных площадей (изменение доли высокоурожайных хозяйств в общей площади посева сахарной свеклы).

·Относительное влияние покажет общий индекс структуры:

или 103,69%

·Абсолютное изменение:

(ц/га)

Увеличилась доля высокоурожайных хозяйств в структуре посевных площадей, средняя урожайность сахарной свеклы увеличилась на 10,81 ц/га или 3,69%

Проверим взаимосвязь рассчитанных показателей:

1. взаимосвязь индексов покажем с помощью мультипликативной модели урожайности:

1,1238=1,0838*1,0369=1,1238

2. взаимосвязь абсолютных показателей с помощью аддитивной модели урожайности:

36,27=25,46+10,81=36,27

Проведем индексный анализ валового сбора сахарной свеклы:

·Относительное изменение:

или 134,15%

·Абсолютное изменение в составе:

3009216-2243020=766196 ц.

Следовательно, валовой сбор сахарной свеклы в отчетном году увеличился на 766196 или 34,15%

На изменение валового сбора оказывают влияние три фактора:

1. изменение урожайности в отдельных колхозах;

2. изменение структуры посевных площадей;

3. изменение размера посевных площадей (экстенсивный фактор).

Рассмотрим влияние изменения урожайности в отдельных колхозах:

·Относительное влияние покажет общий индекс постоянного состава:

или 108,62%

·Абсолютное изменение в составе:

(329,89-303,70)*9142=239428,98 ц.

За счет увеличения урожайности в отдельных хозяйствах в отчетном году по сравнению с базисным валовой сбор сахарной свеклы увеличился на 239428,98 ц. или на 8,62 %.

Покажем влияние изменения структуры посевных площадей:

·Относительное влияние покажет общий индекс структуры:

или 103,69%

·Абсолютное влияние составит:

(303,70-292,89)*9142=98825,02 ц.

Следовательно, за счет улучшения структуры посевных площадей валовой сбор сахарной свеклы в отчетном году увеличился на 98825,02 ц или 3,69%.

Рассмотрим влияние изменения размера посевных площадей:

·Относительное изменение:


или 119,37%

·Абсолютное изменение:

ц

Следовательно, за счет увеличения размера посевных площадей на 1484 га, в отчетном году был получен прирост 434648,76 ц или 19,37% валового сбора сахарной свеклы.

Проверим взаимосвязь рассчитанных показателей:

1. Мультипликативная модель валового сбора:

1,3415=1,0862*1,0369*1,1937=1,3444

2. Аддитивная модель:

766196=239428,98 +98825,02 +434648,76=772903

Таким образом, на увеличение валового сбора сахарной свеклы повлияли интенсивный и экстенсивный факторы. Это повышение урожайности сахарной свеклы в отдельных хозяйствах, увеличение размера посевных площадей, а также улучшение структуры посевных площадей.

Валовой сбор сахарной свеклы увеличился на 239428,98 ц или 3,69%

Следовательно, в хозяйствах Семилукского, Аннинского, Хохольского, Бутурлиновского районов Воронежской области необходимо изыскивать резервы увеличения урожайности сахарной свеклы и как следствие этого увеличение его валового сбора.

4. Выявление взаимосвязей методом аналитической группировки

В статистике для исследования существующих зависимостей, а также для выделения качественно однородных совокупностей, изучения структуры совокупности используют метод статистических группировок.

Группировка – это разбиение совокупности на группы, однородные по какому-либо признаку или объединение отдельных единиц совокупности в группы, однородные по каким-либо признакам.

В зависимости от решаемых задач выделяют виды группировок:

а) типологические – служат для выявления и характеристики социально-экономических явлений путем разделения качественно разнородной совокупности на классы, типы, однородные группы единиц в соответствии с правилами научной группировки;

б) структурные – группировка, в которой происходит разделение однородной совокупности на группы, характеризующие ее структуру по какому-либо варьирующему признаку;

в) аналитические (факторные)– основной задачей которых является исследование связей и зависимостей между изучаемыми явлениями и их признаками.

Для решения поставленной нами задачи необходимо использовать аналитическую группировку. Для этого необходимо пройти несколько этапов:

1. Правильно выбрать группировочный признак, то есть признак, по которому производится распределение единиц изучаемой совокупности на группы. Он выбирается в зависимости от решаемой задачи. В нашем случае группировочный признак – нагрузка пашни на 1 трактор.

Всю совокупность признаков можно разделить на две группы: факторные и результативные. Факторными называются признаки, под воздействием которых изменяются другие признаки, называемые результативными. В основе аналитической группировки лежит факторный признак, и каждая выделенная группа характеризуется средними значениями результативного признака.

2. Построить интервальный ряд распределения – распределение единиц совокупности по величине группировочного признака.

3. Определить сводные и обобщающие показатели по каждой группе и по всей совокупности.

4. На основании сводных и обобщающих показателей рассчитать средние и аналитические показатели по каждой группе и совокупности в целом.

5. Проанализировать полученные показатели и сделать вывод о связи между факторными и результативными признаками.

Определим методом аналитической группировки влияние нагрузки пашни на 1 трактор на урожайность сахарной свеклы.

1. Построим ранжированный ряд распределения хозяйств Семилукского, Аннинского, Хохольского и Бутурлиновского районов Воронежской области по нагрузке пашни на 1 трактор, га : 22; 39; 49; 61; 78; 83; 93; 101; 101; 107; 107; 112; 113; 116; 117; 117; 118; 122; 123; 126; 162; 163; 169; 184; 205.

2. Определим число групп, на которые необходимо разбить исходные данные: n = 1 + 3,322·lgN = 1 + 3,322·lg25 = 1 + 3,322·1,398 = 5,6. Исходные данные надо разбить на шесть групп.

3. Определим равный интервал

(ц/га).

Построим интервальный ряд распределения (Таблица ) и рассчитаем его основные характеристики .


Таблица 6. Интервальный ряд распределения хозяйств Семилукского, Аннинского, Хохольского, Бутурлиновского районов по нагрузке пашни на 1 трактор.

Группы предприятий по нагрузке пашни на 1 трактор. Число хозяйств (f) Середины интервалов (x) fx x- (x-)2 (x-)2 f
I 22-53 3 37,5 112,5 -74,5 5550,25 16650,75
II 53-84 3 68,5 205,5 -43,5 1892,25 5676,75
III 84-115 7 99,5 696,5 -12,5 156,25 1093,75
IV 115-146 7 130,5 913,5 18,5 342,25 2395,75
V 146-177 3 161,5 484,5 49,5 2450,25 7350,75
VI 177-208 2 192,5 385 80,5 6480,25 12960,5

Итого

25 690 2797,5 - - 46128,25

Изобразим интервальный ряд распределения графически.

Рисунок 6. Гистограмма распределения хозяйств по нагрузке пашни на 1 трактор

Рассчитаем среднюю урожайность сахарной свеклы по формуле средней арифметической взвешенной:

(га).


Рассчитаем дисперсию (взвешенную).

(га)

Рассчитаем среднеквадратическое отклонение (взвешенное):

(га).

Рассчитаем коэффициент вариации:

или 38,35%.

Так как дисперсия и среднеквадратическое отклонение (СКО) значительны и коэффициент вариации превышает 33%, то рассчитанная нагрузка пашни на 1 трактор нетипична и недостоверна.

Если величина f распределена нормально, то все варианты отклонений от общей средней не больше, чем на величину трехкратного СКО, то есть

принадлежит интервалу . Пользуясь следствием из этого правила, можно образовать шесть групп для исходных данных (Таблица 9).

Таблица 7. Интервальный ряд распределения хозяйств Семилукского, Аннинского, Хохольского и Бутурлиновского районов по нагрузке пашни на 1 трактор.

Группы Нижняя граница Верхняя граница Число хозяйств (f)
формула значение формула значение
I -16,85 26,10 1
II 26,10 69,05 3
III 69,05 112,00 8
IV 112,00 154,95 8
V 154,95 197,90 4
VI 197,90 240,85 1
Итого 543,15 800,85 25

Построим интервальный ряд распределения хозяйств.

Таблица 8. Интервальный ряд распределения хозяйств Семилукского, Аннинского, Хохольского и Бутурлиновского районов по нагрузке пашни на 1 трактор.

Группы хозяйств по нагрузке пашни на 1 трактор Число хозяйств, частота Сумма накопленных частот
I -16,85 - 26,1 1 1
II 26,10 - 69,05 3 4
III 69,05 - 112,00 8 12
IV 112,00 - 154,95 8 20
V 154,95 - 197,90 4 24
VI 197,90 - 240,85 1 25
Итого 25 86

Изобразим интервальный ряд распределения графически.

Рисунок 7. Гистограмма распределения хозяйств по нагрузке пашни на 1 трактор


Представим вПриложение 6 сводные данные по выделенным нами группам. Затем по полученным групповым сводным данным определим статико-аналитические показатели в среднем по совокупности и по каждой группе. Результат представим в Приложение 7.

Проведенная аналитическая группировка не выявила взаимосвязь между исследуемыми факторами. Проведем вторичную группировку, объединив I группу со II и V с VI (Приложение 8 ).

Повторная аналитическая группировка выявила взаимосвязи между факторами: с увеличение нагрузки пашни на 1 трактор урожайность сахарной свеклы снижается, себестоимость и трудоемкость повышаются, а урожайность соответственно снижается, что и подтверждается данными Приложение 9.

Так, например, в хозяйствах I группы при наименьшей нагрузке пашни 42 га, урожайность сахарной свеклы является самой высокой и составляет 403,5 ц/га., показатель трудоемкости является самым низким 0,03 чел./час, а себестоимость составила 72,6 руб., а уровень рентабельности самый высокий из всех имеющихся групп 32,3%.

Таким образом, мы выявили, что связь между нагрузкой пашни и урожайности обратная, между нагрузкой пашни себестоимостью и трудоемкостью прямая, между нагрузкой пашни и рентабельностью также обратная.

Однофакторный дисперсионный анализ .

Дисперсионный анализ представляет собой метод статистической оценки надежности проявления зависимости результативного признака от одного или нескольких факторов. Дисперсионный анализ является методом оценки выборочных характеристик связи.

Для оценки существенности зависимости, обнаруженной методом группировки исходя из предыдущей главы, можно провести однофакторный дисперсионный анализ и оценить существенность влияния нагрузки пашни на один трактор на урожайность сахарной свеклы.

1. Определим общую вариацию урожайности сахарной свеклы.

, где

- индивидуальное значение результата,

- среднее значение результата в целом по совокупности.

Для того чтобы рассчитать эту формулу необходимо провести следующие расчеты, которые оформлены в Таблице 14.

Таблица 14.Расчет общей вариации урожайности сахарной свеклы

Наименование предприятия Урожайность сахарной свеклы, ц/га (X) x – (x –)2
ЗАО "Землянское Семилукского р-на 320,86 208,96 43662,89
ООО СП "Маяк" Семилукского р-на 126,64 14,74 217,27
ООО "Лосево" Семилукского р-на 200,00 88,10 7761,61
к-з им. К.Маркса Семилукского р-на 248,53 136,63 18666,39
СХА им. Ленина Семилукского р-на 307,30 195,40 38179,90
ООО "Токай" Аннинского р-на 137,70 25,80 665,77
ООО"Агротех-гарант" Аннинского р-на 402,00 290,10 84158,01
СХА "Путь Ленина" Аннинского р-на 390,12 278,22 77406,37
СХА "Битюгское" Аннинского р-на 275,07 163,17 26623,36
CXA "Заря" Аннинского р-на 313,72 201,82 40732,66
СХА "Левашовка" Аннинского р-на 204,82 92,92 8633,51
ЗАО "Николаевка" Аннинского р-на 644,41 532,51 283562,34
СХА "Ясырки" Аннинского р-на 250,19 138,29 19123,82
ООО "Нива" Аннинского р-на 467,49 355,59 126441,88
СХА им. Ленина Аннинского р-на 607,63 495,73 245743,28
ООО"Агрошанс" Бутурлиновского р-на 180,23 68,33 4669,26
ООО "Нива" Бутурлиновского р-на 104,40 -7,50 56,25
ООО"Нижнекисляйские семена" Бутурлиновского р-на 299,21 187,31 35086,28
ООО "Озерское" Бутурлиновского р-на 226,52 114,62 13136,60
ООО "Славянский" Бутурлиновского р-на 306,32 194,42 37800,87
ООО "Юбилейное" Хохольского р-на 413,37 301,47 90886,52
ООО "Семедесятская Нива" Хохольского р-на 420,00 308,10 94925,61
ЗАО "Дон" Хохольского р-на 444,03 332,13 110311,67
ЗАО "Хохольское" Хохольского р-на 429,63 317,73 100951,19
ООО "Ленинская Нива" с. Староникольское Хохольского р-на 213,99 102,09 10421,49
Итого =317,37 =1519824,78

Таким образом, общая вариация составит:

Wобщ = 1519824,78 (ц/га).

2. Определим факторную вариацию урожайности сахарной свеклы, которая отражает изменение результата под влиянием изучаемого фактора:

, где

- среднее значение результата по группам, которые получены на основании группировки по факторному признаку,

- среднее значение результата в целом по совокупности,

n - число единиц совокупности в группе

Wфакт = (403,5-301,4)2 *4 + (348,9-301,4)2 *8 + (254,8-301,4)2 *8 + (262,4-301,4)2 *5 = 41697,6 + 18050 + 17372,5 + 7605 = 84725,1(ц/га)

3. Определим факторную вариацию урожайности сахарной свеклы, которая отражает изменение результата под влиянием изучаемого фактора:


Wост = Wобщ – Wфакт = 1519824,78 – 84725,1= 145099,6 (ц/га).

Определим остаточную вариацию урожайности сахарной свеклы:

,

где N – число хозяйств.

63326,03 (ц/га).

5. Определим факторную дисперсию:

,

где n – число групп.

=28241,67 (ц/га).

6. Определим остаточную дисперсию:

.

= 6909,50 (ц/га).

7. Определим фактическое значение F-критерия Фишера:


= 4,09

8. Найдем табличное значение F-критерия Фишера при a = 0,05 и числом степеней свободы числителя и знаменателя 3 и 21соответственно:

F (a = 0,05;3;21)=3,07

9. Сравним фактическое и табличное значение критерия Фишера и сделаем соответственные выводы.

, а ,

так как>, следовательно, влияние нагрузки пашни на один трактор на урожайность сахарной свёклы существенно. Это даёт возможность использовать данный фактор при построении экономико-математической модели урожайности сахарной свёклы.

5.Проектная часть

На практике урожайность сельскохозяйственной культуры находится под влиянием множества факторов. Эти факторы могут быть связанны с организацией хозяйственной деятельности предприятия (например, размеры посевных площадей, трудообеспеченность, нагрузка пашни на 1 трактор, производственные затраты). Кроме того, связаны с уровнем спецализации . Таким образом, изучаемое нами явление многофакторное и между факторами существуют сложные взаимосвязи. Потому их влияние комплексное и его нельзя рассматривать как простую сумму изолированных влияний. Более того, в таких условиях между результативным (исследуемым) и факторными признаками отсутствует функциональная (жесткая) связь.

В подобном случае в статистике для оценки меры влияния на изучаемый (результативный) признак каждого из включенных в модель факторов при фиксированном положении (на среднем уровне) остальных факторов, а также для нахождения при любых возможных сочетаниях факторов теоретическое значение этого показателя используется многофакторный корреляционно-регрессионный анализ.

Математически задача формулируется следующим образом. Требуется найти аналитическое выражение, наилучшим образом отражающее связь факторных признаков с результативным, т. е. найти функцию y = f(x1 , x2 , x3 , … xn ).

Чаще всего используется функция в линейной форме, так как в большинстве практических случаев любую функцию многих переменных путем логарифмирования или замены переменных можно свести к линейному виду:

YX1,X2,…,Xn = a0 + a1 X1 + a2 X2 + … + an Xn

Каждый коэффициент уравнения показывает степень влияния соответствующего фактора на анализируемый показатель при фиксированном положении (на среднем уровне) остальных факторов: с изменением каждого фактора на единицу показатель изменяется на соответствующий коэффициент регрессии.

При этом, как бы удачно ни был выбран вид функции, нельзя ожидать полного соответствия расчетных и фактических у значений изучаемого показателя, так как уравнение множественной регрессии учитывает влияние (среднее) на результативный признак не всех, а лишь основных, существенных факторов. Действие остальных неучтенных факторов и вызывает разброс фактических значений вокруг расчетных. В связи с этим возникает необходимость оценки тесноты связи результативного признака с факторными.

Показателем тесноты связи, устанавливаемой между результативным и двумя или более факторными признаками, является совокупный коэффициент множественной корреляции (R ). Он служит основным показателем линейной корреляционной связи. Его значения находятся в пределах от 0 до 1. Чем меньше наблюдаемые значения изучаемого показателя отклоняются от линии множественной регрессии, тем корреляционная связь является более интенсивной, а, следовательно, величина R ближе к единице.

Величина R 2 называется совокупным коэффициентом множественной детерминации. Она показывает, какая доля вариации изучаемого показателя объясняется влиянием факторов включенных в уравнение множественной регрессии. Значения совокупного коэффициента множественной детерминации находятся в пределах от 0 до 1. Поэтому, чем R 2 ближе к единице, тем вариация изучаемого показателя в большей мере характеризуется влиянием отобранных факторов.


5.1 Построение многофакторной корреляционной модели урожайности сахарной свеклы

Для построения многофакторной корреляционной модели уровня окупаемости в нее были заложены следующие факторы:

Х1 - производственные затраты на 1 га посева сахарной свеклы (уровень интенсивности), руб.

Х2 - нагрузка пашни на 1 трактор, га

Х3 - фондовооруженность 1 работника, тыс. руб.

Х4 - энерговооруженность 1 работника, л.с.

Х5 - уровень специализации, %

Х6 - затраты труда на 1 га посева сахарной свеклы, руб.

Х7 - стоимость внесенных удобрений на 1 га сахарной свеклы, руб.

Х8 - фондообеспеченность хозяйства, тыс. руб.

Х9 - уровень концентрации (площадь посева сахарной свеклы), га

Х10 - трудообеспеченность (число работников на 100 га пашни), чел.

Обрабатывая данные приложения 6 с помощью ЭВМ в пакете прикладных программ STSTGRAF были получены данные (Приложение 11), которые можно оформить в виде следующей таблицы.

Полученные результаты представлены в Таблице 15:

Таблица 15.Экономико-математическая модель урожайности сахарной свеклы по хозяйствам Аннинского, Семилукского, Хохольского, Бутурлиновского районов за 2006 год

Независимые переменные Условные обозначения Коэффициент регрессии Стандартная ошибка t-статистика Уровень значимости
Name Independent variable coefficient std.error t-value sig. Level
- Constant 12,035294 150,540694 0,0799 0,9374
1. производственные затраты на 1 га посева сахарной свеклы (уровень интенсивности), руб. Х1 0,009268 0,001689 5,4878 0,0001
2. нагрузка пашни на 1 трактор, га Х2 0,000618 0,729612 0,0008 0,9993
3. фондовооруженность 1 работника, тыс. руб. Х3 -0,05059 0,238067 -0,2125 0,8348
4. энерговооруженность 1 работника, л.с. Х4 0,226098 0,724128 0,3675 0,7188
5. уровень специализации, % Х5 2,104855 3,084833 0,6823 0,5062
6. затраты труда на 1 га посева сахарной свеклы, руб. Х6 -0,926688 1,28856 -0,7192 0,4839
7. стоимость внесенных удобрений на 1 га сахарной свеклы, руб. Х7 0,008421 0,01518 0,5547 0,5878
8. фондообеспеченность хозяйства, тыс. руб. Х8 0,029982 0,082851 0,3619 0,7229
9. уровень концентрации (площадь посева сахарной свеклы), га Х9 -0,003685 0,121578 -0,0303 0,9762
10. трудообеспеченность (число работников на 100 га пашни), чел Х10 5,3876778 9,703607 0,6056 0,5545
R-SQ. <ADJ.>= 0,6049 SE= 87,433520 MAE= 51,876862 DurbWat=2,615

Коэффициент детерминации равен 0,6049 или 60,49%. Следовательно, на долю неучтенных факторов приходится 39,51%, оказывающих влияние на урожайность сахарной свеклы.

Статистическая оценка характеристик данной модели (коэффициент детерминации, средняя ошибка, стандартная ошибка и коэффициент Дарбина-Уотсона) показывают, что некоторые факторы количественно мало определяют результат, а влияние некоторых факторов(X2 - нагрузка пашни на 1 трактор, Х4 - энерговооруженность 1 работника, Х5 - уровень специализации, Х6 - затраты труда на 1 га посева сахарной свеклы, Х7 - стоимость внесенных удобрений на 1 га сахарной свеклы, Х8 - фондообеспеченность хозяйства, Х9 - уровень концентрации (площадь посева сахарной свеклы) не поддается логико-экономическому осмыслению. Перечисленные факторы были исключены из модели.

Компьютерная программа позволила просчитать ряд вариантов и построить улучшенную модель с помощью пакета STATGRAF на ЭВМ (Приложение 12). Полученные результаты можно представить в таблице.

Таблица 16. Улучшенная экономико-математическая модель урожайности сахарной свеклы по хозяйствам Аннинского, Семилукского, Хохольского, Бутурлиновского районов.

Независимые переменные Условные обозначения Коэффициент регрессии Стандартная ошибка t-статистика Уровень значимости
Name Independent variable coefficient std.error t-value sig. Level
- Constant 38,821982 46,3181 0,8382 0,4114
1. производственные затраты на 1 га посева сахарной свеклы (уровень интенсивности), руб. Х1 0,008794 0,001254 7,0152 0,0000
2. фондовооруженность 1 работника, тыс. руб. Х3 0,070943 0,072784 0,9747 0,3408
3. трудообеспеченность (число работников на 100 га пашни), чел Х10 10,192698 4,962204 2,0541 0,0526
R-SQ. < ADJ .>= 0,6930 SE =77,079881 MAE =52,100670 DurbWat=2,557

Модель в целом улучшилась. Коэффициент детерминации возрос (ADJ) и стал равным 0,6930 или 69,30%. Отсюда следует, что на долю неучтенных факторов приходится 30,7 %.

Коэффициент корреляции составит:

Кк =0,83.

Он свидетельствует о том, что между урожайностью сахарной свеклы и перечисленными выше факторами связь прямая и тесная (по шкале Чедека). Так как коэффициент корреляции > 0,8, а коэффициент детерминации > 69%, то разработанная экономико-математическая модель адекватна, т.е. в наибольшей степени отвечает экономическим целям хозяйств анализируемых районов. Исключение этих факторов из модели значительно ухудшало ее.

Полученная модель количественно измеряет исследуемую связь. Это можно представить в виде следующего уравнения регрессии:

Yx 1 x 3 x 10 =38,821982+0,008794X1 +0,070943X3 +10,192698X10

Коэффициент регрессии при Х1 свидетельствует о том, что при увеличении производственных затрат на 1 га посева сахарной свеклы (уровень интенсивности) на 1 руб. урожайность сахарной свеклы увеличивается на значение коэффициента регрессии, который в данном случае равен 0,008794 (ц/га).

Коэффициент регрессии при Х3 свидетельствует о том, что при увеличении фондовооруженности 1 работника на 1 тыс. руб. урожайность сахарной свеклы увеличивается на значение 0,070943 (ц/га).

В значительной части рядов динамики экономических процессов между уровнями, особенно близко расположенными, существует взаимосвязь. Само явления взаимосвязи называется автокорреляцией [15].

Автокорреляция - это зависимость последующих уровней ряда от предыдущих.

Если последовательные значения ошибок коррелируют между собой, то существует автокорреляция ошибок, приводящая к росту ошибок параметров регрессии. Методом выявления автокорреляции является нахождение критерия Дарбина-Уотсона (d ). Если d » 2, то автокорреляция практически отсутствует; если d » 0, то наблюдается полная положительная автокорреляция; если d » 4, то имеется полная отрицательная автокорреляция. Если 0<d <2, то говорят о правосторонней автокорреляции (за положительным значением ошибки в момент времени t скорее всего последует положительное значение ошибки в момент времени t + 1 и наоборот, за отрицательным – отрицательное), если 2<d <4, то – о левосторонней (за положительным значением ошибки в момент времени t скорее всего последует отрицательное значение ошибки в момент времени t + 1 и наоборот, за отрицательной – положительное).

Коэффициент Дарбина-Уотсона в нашем случае равен 2,557. Это свидетельствует о левосторонней корреляции, так как данный показатель 2<d <4.

C целью оценки существенности влияния изучаемых факторов на результат проведем многофакторный дисперсионный анализ и результаты оформим в таблице 17 на основании Приложение 13.

Таблица 17. Многофакторный дисперсионный анализ для всей модели

Источник вариации Сумма квадратов отклонений Число степеней свободы Дисперсия на одну степень свободы Критерий Фишера (Fрасч ) Уровень значимости
Source Sum of Squares DF Mean Squares F-Ratio P-value
Модель (Model) 339651 3 113217 19,0559 0,0000
Ошибка (Error) 124767 21 5941,31
Total <Corr.> 464418 24
R-squared= 0,731347 Stnd.error of est.= 77,0799
R-squared <Adj.for d.f.>=0,490031 Durbin-Watson statistic=2, 55666

Так как Fрасч .=19,0559 превышает табличное значение критерия Фишера (Fтабл =3,07), то отсюда следует, что влияние заложенных в модель факторов на урожайность сахарной свеклы значимо.

Оценив значимость модели в целом, представляет интерес влияние каждого фактора на результат. Для изучения этого влияния проведем анализ вариации по факторам, и результат представим в виде таблицы.

Таблица 18. Дисперсионный анализ вариации по факторам

Факторы вариации Сумма квадратов отклонений Число степеней свободы Дисперсия на одну степень свободы Критерий Фишера (Fрасч/фактич) Уровень значимости
Source Sum of Squares DF Mean Squares F-Ratio P-value
Х1 - производственные затраты на 1 га посева сахарной свеклы (уровень интенсивности), руб. 313833,454 1 313833,45 52,82 0,0000
Х3 - фондовооруженность 1 работника, тыс. руб. 749,789 1 749,79 0,13 0,7297
Х10 - трудообеспеченность (число работников на 100 га пашни), чел 25067,503 1 25067,50 4,22 0,0526
Model 339650,746 3

Данная таблица свидетельствует о том, что существенное влияние на урожайность сахарной свеклы оказывают влияние такие факторы как: Х1 - производственные затраты на 1 га посева сахарной свеклы (уровень интенсивности), руб <0,05 итрудообеспеченность (число работников на 100 га пашни), чел.

5.2 Расчет резервов роста урожайности и валового сбора сахарной свеклы

В предыдущем пункте нами была разработана экономико-математическая модель урожайности сахарной свеклы. Эта модель достаточно полно отвечает экономическим целям хозяйств анализируемых районов и может быть рекомендована к практическому применению, в частности для расчета резервов повышения урожайности сахарной свеклы.

Освоение этих резервов обеспечивает существенный прирост эффективности производства при незначительных затратах труда и средств. Теперь необходимо выяснить, что же понимают под словом резервы, и какие виды их бывают.

Под резервами понимают - неиспользованные возможности для роста продукции, выручки, прибыли или для снижения затрат, либо прямые потери, которые несет хозяйство в настоящий момент, но которые можно избежать в будущем, если разработать и внедрить систему соответствующих мероприятий [15]. Определим резервы повышения урожайности сахарной свеклы на примере Семилукского, Аннинского, Бутурлиновского и Хохольского районов Воронежской области.

На основании полученных данных видно, что в хозяйствах Аннинского, Семилукского, Хохольского и Бутурлиновского районов имеются резервы повышения урожайности сахарной свеклы. Чтобы отстающие хозяйства достигли уровня средних хозяйств им нужно увеличить затраты на 177,98 руб. на 1га или на 56,08 %. А для достижения уровня передовых хозяйств нужно увеличить затраты на 259,49 руб. на 1га или на 81,75%.

На основе расчета резервов повышения урожайности сахарной свеклы, и пользуясь данными Приложение 5 и Приложение 15 , рассчитаем резервы увеличения валового сбора сахарной свеклы в хозяйствах Семилукского, Аннинского, Бутурлиновского и Хохольского районов Воронежской области. Оформим полученные расчеты в виде таблицы в Приложение16.

Отсюда следует, резерв увеличения валового сбора сахарной свеклы по хозяйствам Аннинского, Семилукского, Хохольского и Бутурлиновского районов составил 207103 ц. Это связано с тем, что 12 отстающих хозяйств не реализовали свои возможности, и фактическая урожайность в них оказалась ниже теоретической. Ликвидация этих потерь приведет к увеличению валового сбора.

Таблица 19. Резервы повышения урожайности сахарной свеклы в районах Воронежской области.

Факторы Условные обозначения Средний уровень факторов

Отклонение среднего уровня факторов

отстающих хозяйств

Коэффициент регрессии Резервы повышения урожайности сахарной свеклы

По

району

По передовым хозяйствам По отстающим хозяйствам От среднего уровня по району От уровня передовых хозяйств

До среднего уровня

по району

До уровня

передовых

хозяйств

ц/га % ц/га %
1 2 3 4 5 6 7 8 9 10 11 12
1.Производственные затраты на 1 га посева сахарной свеклы (уровень интенсивности), руб. Х1

24699,36

38674,88 18122,65 6576,71 20552,23 0,009 125,78 39,63 -184,97 58,28
2.Фондовооруженность 1 работника, тыс. руб. Х3 239,4

549,86

118,67 120,73 413,19 0,070 21,73 6,85 28,93 9,11
3.Трудообеспеченность (число работников на 100 га пашни), чел Х10 4,352 7,34 2,67 1,68 4,67 10,193 -30,47 9,60 45,59 14,36
Итого: - - - - - - -

177,98

56,08

259,49

81,75


В настоящее время урожайность сахарной свеклы низкая - это следствие не только неблагоприятных погодных условий в отдельные годы, но и плохой организации, недостаточной специализации, концентрации производства. В сложившихся условия не соблюдается технология возделывания сахарной свеклы, не обеспечивается оптимальная густота насаждений, затягиваются работы по борьбе с сорняками, не уделяется должное внимание применению удобрений.

Выводы и предложения

В данной работе мы рассматривали вопросы, связанные со статистико-экономическим анализом валового сбора и урожайности сахарной свеклы.

Мы рассмотрели современное состояние производства сахарной свеклы ,изучили специфику российского рынка и сделали вывод, что сахарная свекла является основным сырьем для производства сахара - стратегического продукта питания и поэтому вопрос повышения урожайности сахарной свеклы - это вопрос продовольственной безопасности России.

Более углубленно мы провели статистико-экономический анализ сахарной свеклы на примере ЗАО «Землянское » Семилукского района и других хозяйств Семилукского, Аннинского, Хохольского и Бутурлиновского районов Воронежской области.

В ходе проведения названного анализа нами была определена динамика производства сахарной свеклы в изучаемом хозяйстве. Валовой сбор на этом предприятии отличается неустойчивостью. На основании обобщающих показателей, показатели ряда динамики сделан вывод о том, что, несмотря на резкое, выходящее из общей тенденции, уменьшение валового сбора в 2006 г ежегодно в течение 2001-2006 гг. урожай сахарной свеклы увеличивается на 12959,4 ц. или на 25,064 %.

Урожайность сахарной свеклы в ЗАО «Землянское » отличается неустойчивостью и имеет цикличный характер. Более благоприятные условия для выращивания сахарной свеклы в этом хозяйстве были в 2005 году,а самые худшие условия для выращивания были в 2000 году. Средние показатели ряда динамики свидетельствуют о том, что ежегодно в течение рассматриваемого периода времени урожайность сахарной свеклы увеличивалась на 16,23 ц/га или на 6,96%.

Задачей дальнейшего исследования является выявление факторов, которые позволили бы подтвердить выявленную тенденцию. Для подтверждения этого далее используются различные статистические методы: индексный анализ, группировка, дисперсионный и корреляционный анализ. Для их проведения были отобраны 25 хозяйств Аннинского, Семилукского Хохольского и Бутурлиновского районов Воронежской области.

На основании проведенных расчетов можно сделать вывод, что на увеличение валового сбора сахарной свеклы повлияли интенсивный и экстенсивный факторы. Это повышение урожайности сахарной свеклы в отдельных хозяйствах, увеличение размера посевных площадей, а также улучшение структуры посевных площадей. Валовой сбор сахарной свеклы увеличился на 239428,98 ц или 3,69%.

На основании имеющихся данных из фишек далее была проведена аналитическая группировка хозяйств Аннинского, Семилукского, Хохольского и Бутурлиновского района по нагрузке пашни на 1 трактор по правилу трех сигм.

Аналитическая группировка выявила необходимые связи и зависимости. Таким образом, мы выявили, что связь между нагрузкой пашни и урожайности обратная, между нагрузкой пашни себестоимостью и трудоемкостью прямая, между нагрузкой пашни и рентабельностью также обратная.

В проектной части данной работы была построена многофакторная корреляционная модель урожайности сахарной свеклы с использованием десяти рассчитанных ранее факторов. Компьютерная программа позволила просчитать ряд вариантов и построить улучшенную модель с помощью пакета STATGRAF. Математическим выражением построенной модели является уравнение регрессии:

Yx 1 x 3 x 10 =38,821982+0,008794X1 +0,070943X3 +10,192698X10

Коэффициент регрессии при Х1 свидетельствует о том, что при увеличении производственных затрат на 1 га посева сахарной свеклы (уровень интенсивности) на 1 руб. урожайность сахарной свеклы увеличивается на значение коэффициента регрессии, который в данном случае равен 0,008794 (ц/га).

Коэффициент регрессии при Х3 свидетельствует о том, что при увеличении фондовооруженности 1 работника на 1 тыс. руб. урожайность сахарной свеклы увеличивается на значение 0,070943 (ц/га).

Полученная модель достаточно полно отвечает экономическим целям хозяйств анализируемых районов и может быть рекомендована к практическому применению, в частности для расчета резервов повышения урожайности сахарной свеклы.

Таким образом, поставленные ранее задачи выполнены, а, следовательно, цель проекта достигнута.

Список использованной литературы

1. Ефимова М.Р. Общая теория статистики: Учебник. / М.Р. Ефимова, Е.В. Петрова, В.М. Румянцев. -2-е изд., испр. и доп. -М.: ИНФРА-М, 1999. -416 с.

2. Зинченко А.П. Сельскохозяйственная статистика с основами социально-экономической статистики / А.П. Зинченко, М.: Издательство МСХА, 1998. -430 с.

3. Иванов Е.В. Сахарная индустрия Россиик 2014году.//Сахарная свекла.-2008.-№ 1. с8-10.

4. Интенсивная технология выращивания сахарной свеклы/Пер. с нем. А.Т.Докторов; Под ред В.А.Петрова.-М.:Агропромиздат.1987 г.-320с.

5. Куртоедова Л.М. Рынок сахара в январе-сентябре 2007года. // Сахарная свекла.-2008. -№1. с2-6.

6. Минаков И.А. Экономика сельского хозяйства / Минаков И.А., Касторнов Н.П., Смыков Р.А. и др. Под. ред. И.А. Минакова. – 2-е изд., перераб. и доп. – М.: КолосС, 2005. – 400 с.

7. Нанаенко А.К. Технология получения максимальных урожаев. // Сахарная свекла.-2007. -№1. с10-12.

8. Общая теория статистики: Статистическая методология в изучении коммерческой деятельности: Учебник / Под ред. О.Э. Башина, А.А. Спирина. – 5-е изд., перераб. и доп. – М.: Финансы и статистка, 2006. – 440 с.

9. Общая теория статистики: Учебник / Под ред. чл.-корр. РАН И.И. Елисеевой И.И. - М.: Финансы и с татистика,1995.-368с.

10. Официальный сайт министерства сельского хозяйства РФ. Режим доступа: http://www.mcx.ru

11. Официальный сайт Федеральной службы государственной статистики РФ. Режим доступа: http://www.gks.ru

12. Официальный сайт журнала "Сахарная свекла": www.sugarbeet.ru

13. Папцов А.Г. Специализация и концентрация в свекловодстве в зарубежных странах. // Сахарная свекла.-2006.№7.с 25-27.

14. Сапронов А.Р. Технология сахарного производства./ Сапронов А.Р. –М.: Колос, 1998. –495 с.

15. Статистика: Учебник / О.А.Бессчетная, А.Н. Гончаров, Г.Л. Горбачева и др.; Под общ. ред. А.Е. Сурикова. – М.: Издательство РАГС, 2005. – 656 с.

16. Статистика: Учебник /В.Г. Минашкин, Р.А. Шмойлова, Н.А. Садовникова, Е.С. Рыбанова; Под ред. В.Г. Минашкина.– М.: Проспект, 2005. – 266 с.

17. Статистика: Учебное пособие / Харченко Л.П., Долженкова В.Г., Ионин В.Г. и др.; Под ред. канд. экон. наук В.Г. Ионина. – Изд. 2-е, перераб. и доп. – М.:ИНФРА-М, 2001. – 384 с.

18. Сурков И.М. Резервы повышения эффективности сельскохозяйственного производства: Учебное пособие. – Воронеж: ВГАУ, 2003. – 222 с.

19. ШпаарД., Дрегер Д. Сахарная свекла (Выращивание, уборка, хранение) / Под общей редакцией Д.Шпаара.-М.: ИД ООО “DLV АГРОДЕЛО”, 2006 – 315С.

20. Экономика сельского хозяйства: Учебное пособие / Под общ. ред. проф. Н.Т. Назаренко. – Воронеж: ФГОУ ВПО ВИПКА, 2004. – 279 с.

21. Экономико - математический словарь http://slovari.yandex.ru/dict/lopatnikov/article/lop/lop-0351.htm

22. Экологический центр «экосистема»: http://www.ecosystema.ru/

Приложения

Приложение 1

Страна Урожайность сахарной свеклы,2005г.
Киргизстан 491.16
Египет 487.81
Чешская Республика 486.46
Ливан 486.27
Ирландия 483.87
Италия 483.87
Сирия 460.00
Словения 455.19
Тунис 426.80
Турция 425.87
Литва 400.46
Мексика 400.00
Польша 383.34
Пакистан 383.16
Хорватия 357.14
Босния и Герцеговина 350.00
Латвия 347.41
Финляндия 346.47
Эстония 317.50
Сербия и Черногория 313.95
Молдова 312.50
Беларусь 307.77
Албания 307.69
Македония 304.37
Румыния 301.74
Иран 277.14
Россия 275.90
Китай 255.32
Украина 247.32
Болгария 235.97
Казахстан 190.48
Венесуэла 188.89
Армения 187.50
Алжир 186.67
Азербайджан 177.46
Грузия 150.00
Туркменистан 115.00
Узбекистан 67.75
Эквадор 64.29


Приложение 2

Фактическая и выровненная урожайность сахарной свеклы в ЗАО "Землянское" Семилукского района.

god uro LMOOTHER LORECASTS QMOOTHER QORECASTS EMOOTHER EORECASTS SMOOTHER SORECASTS
1998 191,1 157,511 383,186 172,166 411,973 167,73 401,888 160,687 283,021
1999 203,2 182,586 408,261 186,25 454,321 184,831 442,865 220,068 284,644
2000 175 207,661 433,336 203,473 499,809 203,677 488,02 244,39 286,004
2001 174,8 232,736 223,838 224,444 257,541
2002 230 257,811 247,342 247,329 265,769
2003 305 282,886 273,988 272,546 271,399
2004 346,2 307,961 303,773 300,958 275,494
2005 374,1 333,036 336,7 330,958 278,606
2006 320,9 356,111 372,76 364,703 281,05

Приложение 3

Сводные данные по группам хозяйств Семилукского, Аннинского, Хохольского и Бутурлиновского районов.

Группы хозяйств по нагрузке пашни на трактор Число хозяйств Площадь посева ,га Количество произведенной сахарной свеклы, ц

Полная

себестоимость реализованного сахарной свеклы, тыс.руб.

Денежная

выручка за

реализацию

сахарной свеклы, тыс.руб.

Себестоимость произведенной сахарной свеклы, тыс. руб.

Прямые

затраты на сахарную свеклу, тыс.чел-ч

Площадь пашни ,га Число тракторов, шт. Прибыль, тыс. руб.
1 2 3 4 5 6 7 8 9 10 11
I -16,85 - 26,1 1 355 152518 8889 14522 9861 4 629 29 5633
II 26,10 - 69,05 3 950 374084 26207 31926 28350 11 4273 89 5719
III 69,05 - 112,00 8 2280 795525 63782,8 32931 32989 60 27689 279 -30851,8
IV 112,00 - 154,95 8 2990 759550 66588 45176 42070 35 29971 252 -21412
V 154,95 - 197,90 4 2079 476751 38797 20587 22985 13,5 19363 115 -18210
VI 197,90 - 240,85 1 492 197784 6273 12176 10312 16 2866 14 5903
Итого 25 9149 2756216 210541,8 157324 146574 147,5 84800 788 -53207,8

Приложение 4

Аналитическая группировка хозяйств Семилукского, Аннинского, Хохольского и Бутурлиновского районов.

Группы хозяйств по нагрузке пашни на трактор Число хозяйств Производственные затраты на 1 га посева сахарной свеклы, руб. Нагрузка пашни на 1 трактор Урожайность сахарной свеклы Трудоемкость 1 ц сахарной свеклы, чел,/час Себестоимость 1 ц сахарной свеклы, руб. Уровень рентабельности, %
1 2 3 4 5 6 7 8
I -16,85 - 26,1 1 27777 22 429,6 0,03 65 63,4%
II 26,10 - 69,05 3 29842 48 393,8 0,03 76 21,8%
III 69,05 - 112,00 8 14469 99 348,9 0,08 41 -48,4%
IV 112,00 - 154,95 8 14070 119 254,0 0,05 55 -32,2%
V 154,95 - 197,90 4 11056 168 229,3 0,03 48 -46,9%
VI 197,90 - 240,85 1 20959 205 402,0 0,08 52 94,1%
В среднем по району 25 16021 108 301,3 0,05 53 -25,3%

Приложение 5

Сводные данные по группам (вторичная группировка)

Группы хозяйств по нагрузке пашни на трактор Число хозяйств Площадь посева сахарной свеклы, га Количество произведенной сахарной свеклы, ц

Полная

себестоимость реализованного сахарной свеклы, тыс.руб.

Денежная

выручка за

реализацию

сахарной свеклы, тыс.руб.

Себестоимость произведенной сахарной свеклы, тыс. руб.

Прямые

затраты на сахарную свеклу,тыс.чел-ч

Площадь пашни ,га Число тракторов ,шт. Прибыль, тыс. руб.
I -16,85-69,05 4 1305 526602 35096 46448 38211 15 4902 118 11352
II 69,05 - 112,00 8 2280 795525 63782,8 32931 32989 60 27689 279 -30851,8
III 112,00 - 154,95 8 2990 759550 66588 45176 42070 35 29971 252 -21412
IV 154,95-240,85 5 2571 674535 45070 32763 33297 29,5 22229 129 -12307
Итого 25 9146 2756212 210536,8 157318 146567 139,5 84791 778 -53218,8

Приложение6

Аналитическая группировка (вторичная группировка)

Группы хозяйств по нагрузке пашни на трактор Число хозяйств Производственные затраты на 1 га посева сахарной свеклы, руб. Нагрузка пашни на 1 трактор, га Урожайность сахарной свеклы, ц/га Трудоемкость 1 ц сахарной свеклы, чел./час Себестоимость 1 ц сахарной свеклы, руб. Уровень рентабельности, %
I -16,85-69,05 4 29280 42 403,5 0,03 72,6 32,3%
II 69,05 - 112,00 8 14469 99 348,9 0,08 41,5 -48,4%
III 112,00 - 154,95 8 14070 119 254,0 0,05 55,4 -32,2%
IV 154,95-240,85 5 12951 172 262,4 0,04 49,4 -27,3%
В среднем по району 25 16025 109 301,4 0,05 53,2 -25,3%

Приложение 7.

Расчет общей вариации урожайности сахарной свеклы

Наименование предприятия Урожайность сахарной свеклы, ц/га (X) ()2
ЗАО "Землянское Семилукского р-на 320,86 208,96 43662,89
ООО СП "Маяк" Семилукского р-на 126,64 14,74 217,27
ООО "Лосево" Семилукского р-на 200,00 88,10 7761,61
к-з им. К.Маркса Семилукского р-на 248,53 136,63 18666,39
СХА им. Ленина Семилукского р-на 307,30 195,40 38179,90
ООО "Токай" Аннинского р-на 137,70 25,80 665,77
ООО"Агротех-гарант" Аннинского р-на 402,00 290,10 84158,01
СХА "Путь Ленина" Аннинского р-на 390,12 278,22 77406,37
СХА "Битюгское" Аннинского р-на 275,07 163,17 26623,36
CXA "Заря" Аннинского р-на 313,72 201,82 40732,66
СХА "Левашовка" Аннинского р-на 204,82 92,92 8633,51
ЗАО "Николаевка" Аннинского р-на 644,41 532,51 283562,34
СХА "Ясырки" Аннинского р-на 250,19 138,29 19123,82
ООО "Нива" Аннинского р-на 467,49 355,59 126441,88
СХА им. Ленина Аннинского р-на 607,63 495,73 245743,28
ООО"Агрошанс" Бутурлиновского р-на 180,23 68,33 4669,26
ООО "Нива" Бутурлиновского р-на 104,40 -7,50 56,25
ООО"Нижнекисляйские семена" Бутурлиновского р-на 299,21 187,31 35086,28
ООО "Озерское" Бутурлиновского р-на 226,52 114,62 13136,60
ООО "Славянский" Бутурлиновского р-на 306,32 194,42 37800,87
ООО "Юбилейное" Хохольского р-на 413,37 301,47 90886,52
ООО "Семедесятская Нива" Хохольского р-на 420,00 308,10 94925,61
ЗАО "Дон" Хохольского р-на 444,03 332,13 110311,67
ЗАО "Хохольское" Хохольского р-на 429,63 317,73 100951,19
ООО "Ленинская Нива" с. Староникольское Хохольского р-на 213,99 102,09 10421,49
Итого 317,37 1519824,78

Приложение 8

Резервы увеличения валового сбора сахарной свеклы в хозяйствам Семилукского, Аннинского, Бутурлиновского и Хохольского районов.

№п/п

Наименование хозяйств

Посевная площадь,

га

(f)

Урожайность сахарной свеклы (фактическая), ц/га

(Уф)

Урожайность сахарной свеклы (теоретическая), ц/га

(Ут)

Уф-Ут

Резерв, ц

(Уф-Ут)*f

1 2 3 4 5 6 7
2 ООО СП "Маяк" Семилукского р-на 200 126,64 170,74 -44,10 -8820
3 ООО "Лосево" Семилукского р-на 150 200,00 216,34 -16,34 -2451
4 К-з им. К.Маркса Семилукского р-на 160 248,53 264,34 -15,82 -2530,4
6 ООО "Токай" Аннинского р-на 353 137,70 180,10 -42,40 -14966,3
8 СХА "Путь Ленина" Аннинского р-на 350 390,12 418,20 -28,08 -9828
9 СХА "Битюгское" Аннинского р-на 90 275,07 315,14 -40,07 -3606,6
10 CXA "Заря" Аннинского р-на 300 313,72 319,70 -5,98 -1793
11 СХА "Левашовка" Аннинского р-на 360 204,82 300,96 -96,14 -34611,6
13 СХА "Ясырки" Аннинского р-на 270 250,19 281,36 -31,17 -8416,2
15 СХА им. Ленина Аннинского р-на 400 607,63 669,51 -61,88 -24753,6
17 ООО "Нива" Бутурлиновского р-на 170 104,40 281,85 -177,45 -30166,5
21 ООО "Юбилейное" Хохольского р-на 230 413,37 426,64 -13,27 -3051,2
Итого - - - - -207103
Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:54:35 19 марта 2016

Работы, похожие на Курсовая работа: Статистико-экономический анализ производства сахарной свеклы
Экономико-статистический анализ урожая и урожайности зерновых в ...
ТВЕРСКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ КАФЕДРА ФИНАНСОВ, СТАТИСТИКИ И АЭД СЕЛЬСКОХОЗЯЙСТВЕННАЯ СТАТИСТИКА С ОСНОВАМИ СОЦИАЛЬНО ...
Средняя урожайность сельскохозяйственных культур (сбор с 1 га) определяется путем деления валового сбора с основных посевов (без промежуточных, повторных и междурядных) на ...
Динамика урожайности зерновых в Тверской области за 1985 - 2001 годы, ц с 1 га
Раздел: Рефераты по статистике
Тип: реферат Просмотров: 7777 Комментариев: 2 Похожие работы
Оценило: 3 человек Средний балл: 4.7 Оценка: неизвестно     Скачать
Статистико-экономический анализ финансовых результатов деятельности ...
Статистико-экономический анализ финансовых результатов деятельности предприятий Содержание Введение. 3 1.Анализ рядов динамики. 5 1.1. Показатели ...
1. Провести анализ рядов динамики валового сбора и урожайности сахарной свеклы за ряд лет;
За счет уменьшения урожайности сахарной свеклы в отдельных хозяйствах валовой сбор сахарной свеклы уменьшилась на 303995 ц или на 27,33%
Раздел: Рефераты по экономике
Тип: курсовая работа Просмотров: 3173 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Статистический анализ производства зерна, сахарной свеклы ...
Содержание Введение 1.Анализ рядов динамики 1.1. Показатели себестоимости и производственных затрат, их сущность, методика расчета 1.2. Динамики ...
Аналитическая группировка хозяйств по одному из факторов (Х- урожайность зерна (сахарной свеклы, подсолнечника), уровень интенсификации), влияющих на себестоимость 1 ц. зерна ...
За счет увеличения урожайности 1 ц. зерна (сахарной свеклы, подсолнечника) средняя себестоимость 1 ц. зерна (сахарной свеклы, подсолнечника) увеличилась на 41,33 ц/га или на 37 %
Раздел: Рефераты по экономике
Тип: курсовая работа Просмотров: 3171 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Экономико-статистический анализ издержек производства и себестоимости ...
Кафедра статистики и прикладной математики Курсовой проект на тему: Экономико-статистический анализ издержек производства и себестоимости продукции ...
Нагрузка посевов зерновых на зерноуборочный комбайн уменьшилась на 3,6% с 201,3 га до 194 га, а нагрузка посевов сахарной свеклы на свеклоуборочный комбайн увеличилась на 34,5 % в ...
Из таблицы видно, что по мере увеличения группировочного признака, т. е урожайности с 42,7 ц/га до 50,3ц/га производственная себестоимость 1 ц наоборот снижается - с 201,7 руб. до ...
Раздел: Рефераты по бухгалтерскому учету и аудиту
Тип: курсовая работа Просмотров: 4044 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Обеспеченность трудовыми ресурсами и факторы повышения ...
Министерство сельского хозяйства Российской Федерации Воронежский Государственный Аграрный университет им К.Д.Глинки Кафедра экономики в АПК. Курсовой ...
Из полученных данных видно, что не смотря на увеличение посевных площадей зерновых и зернобобовых, в 2000 году произошло снижение урожайности, валового сбора и выхода зерна на 100 ...
При увеличении балла бонитета почвы урожайность будет повышаться на 0,3 ц/га; при увеличении количества механизаторов на 100 га пашни на одного урожайность повышается 0,16 ц/га, а ...
Раздел: Рефераты по экономике
Тип: реферат Просмотров: 3538 Комментариев: 2 Похожие работы
Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать
Статистический анализ производства и продажи сахарной свеклы
... академия" Кафедра статистики и анализа КУРСОВАЯ РАБОТА на тему: "Статистический анализ производства и продажи сахарной свеклы" Выполнила: ...
Валовой сбор сахарной свеклы урожая 2007 г. в свеклосеющих хозяйствах всех категорий составил 28 834,5 (в 2006 г. - 30861,2) тыс. т при урожайности 290,6 (в 2006 г. - 325,4) ц/га.
При этом за анализируемые годы вес зерновых растет, а свеклы фабричной уменьшается соответственно на 422,8 ц и 112 ц. Так же на 100 га пашни производство подсолнечника снизилось по ...
Раздел: Рефераты по ботанике и сельскому хозяйству
Тип: курсовая работа Просмотров: 3339 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Современное состояние и анализ деятельности агрофирмы ООО " ...
Оглавление Введение 3 1. Общая характеристика анализа хозяйственной деятельности предприятия. 7 1.1.Понятие анализа хозяйственной деятельности 7 1.2 ...
Для исчисления валового производства продукции какой - либо культуры площадь ее посева (П) умножают на урожайность (У). Если объем валовой продукции отчетного периода (П1У1 ...
С каждого гектара посевов озимых зерновых в ООО намечали получить 42,0 ц, фактическая урожайность составила 48,1 ц, валовый сбор урожая со всей площади-213198 ц.
Раздел: Рефераты по финансовым наукам
Тип: дипломная работа Просмотров: 607 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Повышение рентабельности производства мяса крупного рогатого скота
Введение. Животноводство-совокупность отраслей, занимающихся разведением сельскохозяйственных животных с целью производства продуктов (молоко, мясо ...
Показатель валовой продукции, рассчитываемый по методу валового оборота, допускает в определенной степени повторный счет; показатель конечной продукции охватывает не всю продукцию ...
сахарная свекла
Раздел: Промышленность, производство
Тип: дипломная работа Просмотров: 5444 Комментариев: 2 Похожие работы
Оценило: 1 человек Средний балл: 4 Оценка: неизвестно     Скачать
Экономико-статистический анализ производства сахарной свеклы в ЗАО ...
Министерство ФГОУ ВПО Белгородская государственная сельскохозяйственная академия Кафедра статистики и анализа Курсовая работа по дисциплине статистика ...
Параметры уравнения свидетельствуют о том, что при увеличении уровня внесения удобрений в расчете на 1 га., урожайность сахарной свеклы возрастает на 19,84 ц., а при увеличении ...
Анализ производства сахарной свеклы показал, что валовой сбор сахарной свеклы в 2005 году составил 113864ц., что ниже данных 2004 года на 846 ц. В отчетном периоде по сравнению с ...
Раздел: Рефераты по ботанике и сельскому хозяйству
Тип: курсовая работа Просмотров: 2236 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Анализ финансовых результатов от реализации продукции растениеводства
Номер предприятия Прибыль от реализации 1 ц зерна, руб. Фондообеспеченность хозяйства, тыс.руб. Трудоемкость производства 1 ц зерна, чел.-ч. Оплата 1 ...
Урожайность зерновых, ц/га
Группировка хозяйств по фондообеспеченности показала, что при наименьшем значении средней фондообеспеченности (группировочного признака в данной группировке) показатель уровня ...
Раздел: Рефераты по ботанике и сельскому хозяйству
Тип: реферат Просмотров: 9968 Комментариев: 2 Похожие работы
Оценило: 1 человек Средний балл: 4 Оценка: неизвестно     Скачать

Все работы, похожие на Курсовая работа: Статистико-экономический анализ производства сахарной свеклы (7571)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150653)
Комментарии (1838)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru