Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Параметры вращения цилиндров

Название: Параметры вращения цилиндров
Раздел: Рефераты по физике
Тип: контрольная работа Добавлен 18:59:45 04 апреля 2011 Похожие работы
Просмотров: 464 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Задача 1

Испытываемая жидкость заливается в кольцевую щель на высоту h между цилиндрами А и В (см. рис. 1). Для вращения цилиндра В относительно цилиндра А с частотой n нему должен быть приложен момент М. пренебрегая моментом трения в опорах, определить динамический и кинематический коэффициенты вязкости жидкости с плотностью с. При расчете принять d >> D-d, где D и d – диаметры цилиндров.

Номер варианта

M,

H·см

n,

об/мин

D,

Мм

d,

мм

h,

мм

с,

г/см3

9 1500 80 208 200 120 0,72

Рис. 1

Решение

Возникает момент сопротивления:

dMтр = ,

где =; S – площадь цилиндра. S= р·d·h.

По закону Ньютона (для внутреннего трения):

dFтр = .

Приближенно находим

=.

где Vнар. – скорость наружного цилиндра диаметра d; Vвнутр. = 0 – скорость внутреннего цилиндра диаметра D.

Vнар. = 2 р·n·.

Получаем численно:

= = .

Получаем для нашего случая, сила трения действующая на внутренний цилиндр:

Fтр = з··S.

Вращающий момент силы трения:

Mтр = Fтр ·.


Получаем,

Mтр = з·· р·d·h·.

При установившимся движении М = Mтр :

М = з·· р·d·h·.

Находим динамический коэффициент вязкости:

з = ,

з == = 4,610 Па·с.

Находим кинематическую вязкость жидкости (кинематический коэффициент вязкости жидкости):

д = = = 6,40·10-3 .

Ответ: динамический коэффициент вязкости – з = 4,978 Па·с; кинематический коэффициент вязкости д = 6,40·10-3 .

Задача 2

Определить разность давлений в точках А и В, заполненных водой резервуаров (см. рис. 2), если известны показания ртутного дифманометра Д h= 20 см и расстояние между точками Н =0,7 м. Плотность воды св = 1000 кг/м3 ; ртути срт = 13,544·103 кг/м3 .

вращение цилиндр вязкость давление

Рис. 2

Решение

Давление на уровне О- О можем определить так:

Ро = РА + сВ g (Н + Дх + Дh),

Ро = РА + сВ ·g·Дх +срт ·g·Дh).

Получаем из полученных выражений:

РА + сВ g (Н + Дh)+ сВ ·g·Дх = сВ ·g·Дх+срт ·g·Дh+РА – РВ = срт ·g·Дh– сВ g (Н + Дh) = 13,544·103 кг/м3 ·9,8 м/с2 · 0,2 м – 1000 кг/м3 · 9,8 м/с2 · 0,9 м = 17726,24 Па.

Ответ: разность давлений между точками А и В составляет 17726,24 Па.

Задача 3

Прямоугольное отверстие высотой h= 300 мм и шириной b = 800 мм в вертикальной стенке заполненного водой закрытого резервуара закрыто щитком, вращающимся вокруг горизонтальной оси О (см. рис. 3). Щит прижимается грузом, подвешенным на рычаге длиной r = 1000 мм. Определить минимальный вес груза и построить эпюру давлений на щит, если известны глубина погружения нижней кромки отверстия под водой Н = 1000 мм, расстояние от верхней кромки отверстия до оси вращающегося щита а= 90 мм и показание пружинного манометра со = 1,1·104 Па. Весом рычага и трением в опоре пренебречь. Плотность воды св = 1000 кг/м3 . момент инерции прямоугольника относительно центральной оси определяется по формуле J = b·h3 /12.

Рис. 3

Решение

Манометр показывает избыточное давление по отношению к атмосферному.

Сила давления суммарная, действующая на щит с внутренней стороны щита равна:


F = [Po + с·g (H-)]·b·h.

Находим ее приложение (давление рассчитываем для центра тяжести т. площадки). Сила давления не приложена в центре тяжести площадки, т.е. в точке А.

Сила давления в точке В, где АВ = J/b·h·HA ;

НА = = + (H- ).

Находим минимальный подвешенный груз, чтобы щит не раскрылся:

Q ·Г ≥ F·(a+ + АВ).

Qmin = = =

==

= 3898,69 H

Ответ: минимальный вес груза 3898,69 Н, эпюра давлений на щит показана на рис. 3.

Задача 4

Открытый вертикальный цилиндрический сосуд (рис. 4) радиусом R = 1,2 м с жидкостью равномерно вращается вокруг вертикальной оси со скоростью щ = 80 об/мин. Определить высоту жидкости ho после остановки сосуда и глубину воронок h2 , если известна высота жидкости h1 = 1,5 м.

Рис. 4

Решение

Скорость вращения:

щ = = 8,37 с-1 .

Высота параболоида (глубина воронки):

h2 = = = 5,1 м.

Объем параболоида вращения равен:

Vпар = р·R2 · .

Высота покоящейся жидкости:


ho = h1 =1,5 – = 1,05 м.

Ответ: высота жидкости после остановки сосуда ho = 1,05 м.

Задача 5

Вода вытекает из резервуара, в котором поддерживается постоянный уровень, через трубопровод при атмосферном давлении в конце трубопровода. Пренебрегая сопротивлениями, определить уровень в резервуаре, расход воды Q и построить напорную и пьезометрическую линию, если известны показания ртутного дифференциального пьезометра h, диаметры трубопроводов D1 = 200 мм, D2 =190 мм, d = 150 мм, плотность ртути и воды соответственно срт = 13,5 ·103 кг/м3 ; св = 1000 кг/м3 . Атмосферное давление Ра = 105 Па.

Рис. 5

Решение

Давление статическое в сечении трубки диаметром D1 :

P1 = Pa + сgH– .


Давление статическое в сечении трубки диаметром d:

P = Pa + сgH– .

Используя дифференциальный пьезометр, находим:

P1 – P = (срт – св ) gh,

т.е. = (срт – св ) gh(1)

при выходе из трубы имеем:

Pa + сgH– = Pa (2)

Исходя из неразрывности струи, имеем:

= = .

После сокращения получаем:

= d2 ·V = (3).

На основании выражения (3), можем записать:

= d2 ·V.

V1 = .


Подставляем полученное выражение в выражение (1), получаем:

V2 -= .

V= = = 71,67 м/с.

Находим расход воды:

Q = = = 0,081240 м3 /с = 81,24 л/с.

Находим высоту столба воды Н в резервуаре:

сgH =

gH = ; H = . (атмосферное давление не учитывается).

Из уравнения (3), имеем:

V2 = .

Получаем:

Н = = = 130,48 м.


Ответ: высота воды в резервуаре Н = 130,48 м; расход воды Q = 81,24 л.

Задача 6

В водопроводной сети имеется участок АВ с тремя параллельными ветвями (см. рис. 6). Определить потерю напора h на этом участке и расходы ветвей Q1 , Q2 , и Q3 , если расход магистрали Q = 110 л/с, диаметры и длины участков D1 = 275 мм; D2 = 175 мм; D3 = 200 мм; l1 = 500 м; l2 = 1100 м; l3 = 1300 м. Трубы нормальные.

Рис. 6

Решение

В соответствии с уравнением неразрывности потока расход жидкости по данному трубопроводу будет:

Q = Q1 + Q2 + Q3 (1)

Рассчитаем потери напора в каждом трубопроводе:

Нпот.1 = б1 ·Q, где Q1 = ,

Нпот.2 = б1 ·Q, где Q2 = , (3)

Нпот.3 = б1 ·Q, где Q3 = .

Потери напора в любом из простых трубопроводов, а также общие потери напора в рассматриваемом сложном трубопроводе будут равны разности полных напоров в сечениях А иВ:

НА – НВ = Нпот.1 = Нпот.2 = Нпот.2 = Нпот. (4).

Подставляем в выражение (1) выражение (3) получаем:

Q = = = = . (5)

Поскольку местными сопротивлениями можно пренебречь, сопротивления отдельных простых трубопроводов могут быть найдены по одной из формул:

А = Адл ·l; a= .

Из формулы (5) имеем:

Нпот = .

Из таблицы для нормальных труб, имеем:

D1 = 275 мм; 0,613 м6 /с.

D2 = 175 мм; 0,212 м6 /с.

D3 = 200 мм; 0,116 м6 /с.

Находим потери напора по формуле (5):

а1 = = = 815,66

а2 = = = 5188,67

а1 = = = 11206,89

Нпот = = 6,032

Q1 = = 0,085 м3 /с = 85 л/с.

Q2 = = 0,0340 м3 /с = 34 л/с.

Q3 = = 0,0231 м3 /с = 23,1 л/с.

Q1 + Q2 + Q3 = 0,14 м3 /с = 142,1 л/с.

Ответ: потеря напора на участке АВ составляет 6,032 м. рт. столба, а расходы Q1 = 85 л, Q2 = 34 л/с; Q3 = 23,1 л/с.

Задача 7

Вода под давлением Po подводится по трубе диаметром dc = 13 мм, в котором происходит увеличение скорости и понижение давления (см. рис. 7). Затем в диффузоре поток расширяется до диаметра d= 50 мм. Вода выходит в атмосферу на высоте Н2 = 1,3 м и поднимается из нижнего резервуара на высоту Н1 = 2,5 м. определить минимальное давление Ро перед эжектором с учетом потерь напора в сопле (ос = 0,06), диффузоре (одиф = 0,25), коленах (ок = 0,25).


Рис. 7

Решение

Запишем уравнение Бернулли (перед соплом и на выходе):

1) Ро + = Ра + +сg(H1 + H2 ) +(0,06+2·0,25) .

Давление в струе после сопла будет:

2) Рс £ Ра – сgH1.

Запишем уравнение Бернулли (перед соплом и после сопла в сечениях):

3) Ро + = Ра – сgH1 + +0,06.

Уравнение неразрывности струи:

4) = ; d2 V = Vc ; Vc = ·V.

Численная связь Vc = ·V.

Решаем систему:

Из уравнения (1) отнимаем уравнение (3) и находим

0=+ сg(2H1 + H2 ) + – с· .

· = g(2H1 + H2 ).

V2 = = = 0,56 м22 .

Из первого уравнения имеем:

Р0 ³ Ра + сg(H1 + H2 ) + = Ра + 1000·9,81 (2,5+1,3) + = Ра + 37434,8 Па.

Ответ: минимальное давление перед инжектором Po = Pa + 37434,8 Па.


Литература

1. Р.Р. Чугуев. Гидравлика. М., 1991 г.

2. В.Г. Гейер, В.С. Дулин, А.П. Заря. Гидравлика и гидропривод. М. «Недра», 1991 г.

3. К.Г. Асатур. Гидравлика, конспект лекций, Л., ЛГИ., ч. 1 и 2.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:45:46 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
10:21:32 29 ноября 2015

Работы, похожие на Контрольная работа: Параметры вращения цилиндров

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150512)
Комментарии (1836)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru