Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Лабораторная работа: Тривимірні перетворення

Название: Тривимірні перетворення
Раздел: Рефераты по математике
Тип: лабораторная работа Добавлен 18:49:08 25 марта 2011 Похожие работы
Просмотров: 369 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Вступ

Для кращого сприйняття форми об'єкта необхідно мати його зображення в тривимірному просторі. У багатьох випадках наочне представлення про об'єкт можна одержати шляхом виконання операцій обертання і переносу, а також побудови проекцій. Введемо однорідні координати. Точка в тривимірному просторі задається чотиримірним вектором чи . Перетворення з однорідних координат описується співвідношеннями

( 4 .1)

де T - деяка матриця перетворення.

Ця матриця може бути представлена у вигляді 4 окремих частин

Матриця 3x3 здійснює лінійне перетворення у виді зміни масштабу, зсуву й обертання. Матриця-рядок 1х3 робить перенос, а матриця-стовпець 3х1 - перетворення в перспективі. Останній скалярний елемент виконує загальну зміну масштабу. Повне перетворення, отримане шляхом впливу на вектор положення матрицею 4x4 і нормалізації перетвореного вектора, будемо називати білінійним перетворенням. Воно забезпечує виконання комплексу операцій зсуву, часткової зміни масштабу, обертання, відображення, переносу, а також зміни масштабу зображення в цілому.

Тривимірна зміна масштабу

Діагональні елементи основної матриці перетворення 4х4 здійснюють часткову і повну зміну масштабу. Розглянемо перетворення

,( 4 . 2 )

яке робить часткову зміну масштабу. На рис.4.1а показане перетворення паралелепіпеда в одиничний куб шляхом зміни масштабу. Загальна зміна масштабу виходить за рахунок використання четвертого діагонального елемента, тобто

. ( 4 . 3 )

Це перетворення ілюструє рис.4.1б. Такий же результат можна отримати при рівних коефіцієнтах часткових змін масштабів. У цьому випадку матриця перетворення повинна бути рівна

. ( 4 . 4 )


Вектори положення точок А і В рівні і .

Рис.4.1. Тривимірні перетворення iз зміною масштабів.


Тривимірний зсув

Недіагональні елементи верхньої лівої підматриці 3х3 від загальної матриці перетворення розміру 4х4 здійснюють зсуви в трьох вимірах, тобто

. ( 4 . 5 )

Простий тривимірний зсув одиничного куба показаний на рис.4.1в.

Тривимірні обертання

Раніше було показано, що матриця 3х3 забезпечувала комбінацію операцій зміни масштабу і зсуву. Однак, якщо визначник матриці 3х3 дорівнює +1, то має місце чисте обертання навколо початку координат. Перед розглядом загального випадку тривимірного обертання навколо довільної осі дослідимо кілька окремих випадків. При обертанні навколо осі х розміри уздовж осі х не змінюються. Таким чином, матриця перетворень буде мати нулі в першому рядку і першому стовпці, за винятком одиниці на головній діагоналі. Це приводить до матриці перетворення, що відповідає повороту на кут навколо осі х і задається співвідношенням

( 4 . 6 )


Обертання вважається додатнім, тобто за годинниковою стрілкою, якщо дивитися з початку координат вздовж осі обертання. На рис.4.2а показаний поворот на -90° навколо осі x .

Для обертання на кут Ф навколо осі y - нулі ставлять у другому рядку і другому стовпці матриці перетворення, за винятком одиниці на головній діагоналі. Повна матриця задається виразом

( 4 . 7 )

Рис.4.2. Тривимірні обертання.


На рис.4.2б показаний поворот на 90° навколо осі y . Аналогічно матриця перетворення для обертання на кут навколо осі z має вид

( 4 . 8 )

Аналіз визначників для матриць (4.6)-(4.8) показує, що для будь-якої матриці обертання детермінант дорівнює +1.

Тому що обертання описуються множенням матриць, то тривимірні обертання некомутативні, тобто порядок множення буде впливати на кінцевий результат. Для того щоб показати це, розглянемо обертання навколо осі х , за яким слідує обертання на такий же кут навколо осі y . Використовуючи рівняння (4.6) і (4.7) при = Ф , одержимо


Рис.4.3. Некомутативність тривимірних обертань.


(4.9)

Зворотна послідовність дій, тобто обертання навколо осі y і наступне за ним обертання на такий же кут навколо осі x при = Ф дає

( 4 . 10 )

На рис.4.3 для лівого верхнього зображення штриховими лініями показані результати двох послідовних обертань, описаних матрицею перетворення (4.9). Зображення, отримане обертаннями, виконаними в іншій послідовності, описаними рівняннями (4.10), показані суцільною лінією. З порівняння отриманих зображень видно, що при зміні порядку обертання виходять різні результати.

Часто буває необхідно обертати зображення навколо однієї з осей декартової системи координат.

Відображення в просторі

Іноді потрібно виконати дзеркальне відображення тривимірного зображення. У трьох вимірах найпростіше відображення здійснюється щодо площини. Для відображення без зміни масштабів необхідно, щоб визначник перетворення дорівнював -1,0. При відображенні щодо площини xy змінюється тільки знак координати z . Отже, матриця перетворення для відображення щодо площини xy має вигляд

( 4 . 11 )

Відображення одиничного куба щодо площини ху показане на рис.4.4. Для відображення щодо площини уz

( 4 . 12 )


Рис.4.4. Просторове відображення щодо площини xy .

( 4 . 12 )

а для відображення щодо площини xz

( 4 . 13 )

Відображення щодо інших площин можна одержати шляхом комбінації обертання і відображення.

Просторовий перенос

Тривимірний лінійний перенос зображення задається виразом

( 4 . 14 )

Після перемножування одержимо

( 4 . 15 )

Тривимірне обертання навколо довільної осі

тривимірне обертання фігура відображення

Метод двовимірного плоского обертання навколо довільної осі був розглянений раніше. Узагальненням цього методу є спосіб обертання навколо довільної осі в тривимірному просторі. Як і для плоского випадку, розглянена процедура полягає в переносі зображення і заданої осі обертання, що забезпечує обертання навколо осі, що проходить через початок координат. Метод тривимірного обертання полягає в лінійному переносі, обертанні навколо початку координат і зворотньому лінійному переносі у вихідне положення. Якщо вісь, навколо якої виконується обертання, проходить через точку А = , то матриця перетворення визначається наступним виразом:


(4.16)

де елементи матриці обертання R розміру 4х4 визначаються в загальному випадку співвідношенням

(4.17)

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:40:23 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
10:18:40 29 ноября 2015

Работы, похожие на Лабораторная работа: Тривимірні перетворення

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150316)
Комментарии (1830)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru