Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Прогнозирование и планирование в условиях рынка

Название: Прогнозирование и планирование в условиях рынка
Раздел: Рефераты по маркетингу
Тип: контрольная работа Добавлен 19:56:12 08 марта 2011 Похожие работы
Просмотров: 272 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Задача 1

Систем массового обслуживания обеспечивается 1 работником. Количество клиентов – занятых каналов обслуживания – k. Среднеожидаемое количество клиентов – λ = 4 клиента в час. Среднее время обслуживания работником одного клиента – Тоб = 15 мин. Какова вероятность того, что за среднее время обслуживания потребуется обслужить более, чем 1 клиента?

Решение: Случайная величина k– число клиентов за 0,25 часа – распределена по закону Пуассона с параметром λτ = 1×0,25 = 0,25 . Вероятность того, что клиентов не будет (k=0):

Р0 ≈ ℮-0,25 ≈ 0,78

Вероятность того, что будет только один клиент (k=1):

Р1 ≈ 0,25×0,78 ≈ 0,195

Значит, вероятность того, что за среднее время обслуживания потребуется обслужить более, чем 1 клиента:

Р1 ≈ 1- (0,78 + 0,195) = 0,025

Ответ: вероятность того, что за среднее время обслуживания потребуется обслужить более, чем 1 клиента равна 0,025.

Задача 2

Проанализировать концентрацию продавцов на рынке, рассчитав коэффициент рыночной концентрации и индекс Грефильдаля- Хиршмана для следующих рынков:

Рынок А: 4 фирмы- продавца. Рыночные доли по 25%.

Рынок Б: 4 фирмы-продавца. Рыночные доли: 1 фирма – 20%. 2 фирма -5%. 3 фирма -40%, 4 фирма -35%.

Решение:


(1)

где: У – коэффициент концентрации;

n – число продавцов на рынке.

(2)

где: n – число продавцов на рынке;

qi – объем продаж i – фирмы.

Рынок А

4 фирмы

Доля охвата 25% 25% 25% 25%

Рынок Б

4 фирмы

Доля охвата 20% 5% 40% 35%

Задача 3

Интенсивность равномерного спроса составляет 1000 ед. в год. Организационные издержки 10$, издержки на хранение 4$ за ед. товара в год. Цена единицы товара 5 $. Найти оптимальный размер партии, количество поставок за год, продолжительность цикла, общегодовые издержки по складу. (Основная модель)

Решение:

,(3)

где: s — организационные издержки (за 1 партию);

d— интенсивность равномерного спроса (ед. в год);

h— издержки на хранение товара (за 1 ед. в год).

= 71 ед.

1000/71= 14 – поставок в год.

365/14= 26 дней – продолжительность цикла.

Общегодовые издержки на хранение:

(4)

где:c— цена единицы товара;

s — организационные издержки (за 1 партию);

d— интенсивность равномерного спроса (ед. в год);

h— издержки на хранение товара (за 1 ед. в год);

q— размер партии.

$

Задача 4

Интенсивность равномерного спроса составляет 1000 ед. в год. Товар поставляется с конвейера, производительность которого 5 тыс. ед. в год. Организационные издержки составляют 10 $., издержки на хранение 2 $ за единицу товара в год. Цена единицы товара 5$. Найти оптимальный размер партии, количество поставок в год, продолжительность цикла и продолжительность поставки, общегодовые издержки по складу.( модель производственных поставок)

Решение:

Оптимальный размер поставок:

(5)

где:p— производительность конвейера (ед. в год);

s — организационные издержки (за 1 партию);

d— интенсивность равномерного спроса (ед. в год);

h— издержки на хранение товара (за 1 ед. в год).

ед.

1000/111 = 9 – поставок в год.

365/9= 41 день – продолжительность цикла.

Общегодовые издержки на хранение:

(6)

где:c— цена единицы товара;

s — организационные издержки (за 1 партию);

d— интенсивность равномерного спроса (ед. в год);

h— издержки на хранение товара (за 1 ед. в год);

q— размер партии.

$

Задача 5

Центр имеет ресурс 200, 6 потребителей имеют следующие приоритеты: 4, 16, 9, 1, 25,16.

1) Определить стратегию поведения Потребителя и решение Центра, если цель Потребителя получить как можно больше ресурса.

2) Потребитель имеет следующие потребности: 8, 5, 100, 40, 10, 80.

Определить стратегию поведения Потребителя и решение Центра.

3) Потребителем подали следующие заявки 20, 50, 60, 10, 40, 80. Определите решение центра.

Решение:

1) < R

Будем использовать механизм обратных приоритетов

(7)

рынок концентрация потребитель издержка склад


Таким образом, решение Центра следующее: 21,1; 42,1; 31,6; 10,5; 52,6; 42,1.

2) Механизм прямых приоритетов

Приоритеты потребителей(A1 ... Ai)

Каждый получаетxi = min{si ; gAisi} , причём , а при дефиците

Поэтому(8)

, значит имеет место дефицит.

Согласно формуле (5) находим коэффициент γ:

Теперь находим решение Центра:

Таким образом, решение Центра следующее: 7, 4, 82, 33, 8, 66.

3) Механизм прямых приоритетов

, значит имеет место дефицит.

Согласно формуле (5) находим коэффициент γ:

Теперь находим решение Центра:

Таким образом, решение Центра следующее: 15, 39, 46, 8,31, 61.

Задача 6

6 экспертов сообщили следующие оценки из отрезка [40,100] 65, 90, 45, 80, 75, 90.

Определить решение Центра в соответствии с открытого управления.

Решение:

Вычисляют n чисел по формуле:

(9)

v1=90; v2=90-10=80; v3=90-20=70; v4=90-30=60; v5=90-40=50; v6=90-50=40;

х 45 65 75 80 90 90

v90 80 70 60 50 40

min45 65 70 60 50 40

В качестве итогового решения берется максимальное число в последней строке: х* = 70.

Таким образом, решение Центра следующее: 70.

Задача 7

В 2003 г. в отрасли функционируют 128 фирм одинакового размера, мощностью 1000 ед. продукции в год каждая. Исследования показали, что любая фирма с вероятностью 0,5 может сохранить свой размер, с вероятностью 0,25 может увеличить размер коэффициентом пропорциональности 2,5 и с вероятностью 0,25 может уменьшить размер с коэффициентом пропорциональности 0,4.

1) Рассчитать распределение фирм по размеру в 2004 и 2005 г. в соответствии с процессом Жибера.

2) Проанализировать изменение уровня концентрации в отрасли.

Решение:

160 ед. - 400 ед. - 1000 ед. - 2500 ед. - 6250 ед.

2003г.


2004г.

8 ф. 16 ф. 8 ф. 16 ф. 32 ф. 16 ф. 8 ф. 16 ф. 8 ф.

2005г

Коэффициент концентрации:

(10)

где n – число продавцов на рынке.

(11)

где: n – число продавцов на рынке;

qi – объем продаж i – фирмы.

1) t=2003 г.

Q3=128∙1000=128000

2) t=2004 г.

Q4=32∙400+64∙1000+32∙2500=156800

3) t=2005г.

Q5=8∙160+32∙400+48∙1000+32∙2500+8∙6250=192080

У3=У4=У5

HHI3=HHI4=HHI5

Вывод: с увеличением времени, уровень концентрации в отрасли увеличился, так как в каждый следующий момент времени, увеличивается неравномерное распределение рыночных долей фирм.

Данная модель отражает стохастический подход к изменению уровня концентрации в отрасли. Данный подход делает упор на распределение рыночных долей фирмы.

Существует детерминистический подход, который делает упор на изменение количества фирм в отрасли, что в данный задаче не актуально. На практике нужно учитывать оба подхода в комплексе.

Задача 8

В сервисный центр по ремонту компьютерной техники ежемесячно поступает 300 серверов. Среднеожидаемое время ремонта (обслуживания) Тоб = 10 суток. Среднеожидаемая продолжительность времени между ремонтами Ттр = 0,1 суток. Необходимо рассчитать математическое ожидание числа серверов, ремонтируемых в месяц (в соответствии с законом Пуассона).

Решение: в соответствии с законом Пуассона математическое ожидание числа серверов, ремонтируемых в месяц равно:

М = l × t,(12)

где l – интенсивность ремонта серверов в сутки;

t – время, выбранное для определения математического ожидания (30 дней).

l = 300/ 10,1 = 29,7 сервера в сутки

М = 29,7 × 30 = 891 сервер в месяц.

Ответ: математическое ожидание числа серверов, ремонтируемых в месяц (в соответствии с законом Пуассона) равно 891 серверу.

Задача 9

Среднеожидаемое время безотказной работы (т. е. время между отказами – требованиями на обслуживание) составляет:

1. Для дешевого ненадёжного типа оборудования Ттр = 10 часов

2. Для дорогого надёжного типа оборудования Ттр = 100 часов

Среднеожидаемое время обслуживания (ремонта в случае выхода из строя) обоих видов оборудования равно Тоб = 2 часа.

Стоимость одной единицы дорогого типа оборудования – 172 000 руб., дешёвого – 10 000 руб. стоимость одного часа простоя системы – 1000 руб. определить, какой тип оборудования экономически целесообразно предпочесть в расчёте на 1000 часов работы (в соответствии с теорией массового обслуживания).

Решение: Интенсивность периодов «работа – ремонт» для ненадёжного типа оборудования составляет:

λ = 1000/12 ≈ 83,3 периода

для надёжного типа оборудования:

λ = 1000/102 ≈ 9,8 периода

Таким образом, стоимость эксплуатации ненадёжного оборудования составит: 10 000 + 83,3×2000 = 176 600 руб.

стоимость эксплуатации надёжного оборудования составит: 172 000 + 9,8×2000 = 191 600 руб.

Ответ: экономически целесообразно предпочесть более дешёвый тип оборудования.

Задача 10

Магазин «Молоко» продаёт молочные продукты. Директор магазина должен определить, сколько контейнеров сметаны следует закупить у производителя для торговли в течение недели. Вероятность того, что спрос на сметану в течение недели будет 7, 8, 9 или 10 контейнеров, равны соответственно 0,2; 0,2; 0,5; 0,1. Покупка одного контейнера сметаны обходится магазину в 700 руб., а продаётся по цене 1100 руб. Если сметана не продаётся в течение недели, она портится, и магазин несёт убытки. Сколько контейнеров сметаны желательно приобретать для продажи? Какова ожидаемая стоимостная ценность этого решения?

Решение:

7 0,2

8 0,2

9 0,5

10 0,1

К=(7·0,2+8·0,2+9·0,5+10·0,1)/(0,2+0,2+0,5+0,1)≈9 контейнеров сметаны желательно приобретать для продажи.

Значения математического ожидания или ожидаемой ценности альтернатив определяется по формуле:

EVi = ∑ pjЧVij , где(13)

EVi – ожидаемая ценность (ожидаемый доход) для i-й альтернативы

Pj – вероятность наступления j-го состояния внешней среды

Vij – ценность исхода, получаемого про выборе i-й альтернативы и наступлении j-го состояния внешней среды

Vij= 110-700=400 руб.

EVi = 7·0,2·400+8·0,2·400+9·0,5·400+10·0,1·400=560+640+1800+400=3400 руб.

ожидаемая стоимостная ценность этого решения.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений08:05:47 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
10:03:03 29 ноября 2015

Работы, похожие на Контрольная работа: Прогнозирование и планирование в условиях рынка

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150738)
Комментарии (1839)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru