Банк рефератов содержит более 375 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
375636
Теги названий
Разделы
Авиация и космонавтика (306)
Административное право (123)
Арбитражный процесс (23)
Архитектура (115)
Астрология (4)
Астрономия (4913)
Банковское дело (5249)
Безопасность жизнедеятельности (2638)
Биографии (3656)
Биология (4251)
Биология и химия (1551)
Биржевое дело (68)
Ботаника и сельское хоз-во (2848)
Бухгалтерский учет и аудит (8337)
Валютные отношения (51)
Ветеринария (55)
Военная кафедра (793)
ГДЗ (2)
География (5381)
Геодезия (31)
Геология (1236)
Геополитика (43)
Государство и право (20442)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (110)
ЕГЭ (197)
Естествознание (98)
Журналистика (904)
ЗНО (56)
Зоология (35)
Издательское дело и полиграфия (471)
Инвестиции (108)
Иностранный язык (67342)
Информатика (3661)
Информатика, программирование (6485)
Исторические личности (2573)
История (23816)
История техники (777)
Кибернетика (64)
Коммуникации и связь (3203)
Компьютерные науки (61)
Косметология (17)
Краеведение и этнография (589)
Краткое содержание произведений (1040)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1166)
Культура и искусство (8583)
Культурология (539)
Литература : зарубежная (2054)
Литература и русский язык (12502)
Логика (534)
Логистика (21)
Маркетинг (8022)
Математика (3879)
Медицина, здоровье (10655)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (37)
Международные отношения (2257)
Менеджмент (12527)
Металлургия (91)
Москвоведение (805)
Музыка (1355)
Муниципальное право (24)
Налоги, налогообложение (215)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (22662)
Педагогика (7868)
Политология (3817)
Право (685)
Право, юриспруденция (2883)
Предпринимательство (474)
Промышленность, производство (7197)
Психология (8719)
психология, педагогика (4112)
Радиоэлектроника (492)
Реклама (956)
Религия и мифология (3012)
Риторика (23)
Сексология (751)
Социология (4897)
Статистика (95)
Страхование (117)
Строительные науки (7)
Строительство (2032)
Схемотехника (16)
Таможенная система (663)
Теория государства и права (241)
Теория организации (39)
Теплотехника (26)
Технология (635)
Товароведение (16)
Транспорт (2695)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (407)
Управление (97)
Управленческие науки (24)
Физика (3583)
Физкультура и спорт (4506)
Философия (7268)
Финансовые науки (4594)
Финансы (5398)
Фотография (3)
Химия (2272)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4533)
Экономика (20737)
Экономико-математическое моделирование (677)
Экономическая география (119)
Экономическая теория (2584)
Этика (892)
Юриспруденция (288)
Языковедение (150)
Языкознание, филология (1133)
.

Контрольная работа: Решение дифференциальных уравнений

Название: Решение дифференциальных уравнений
Раздел: Рефераты по математике
Тип: контрольная работа Добавлен 12:15:28 21 февраля 2011 Похожие работы
Просмотров: 6296 Комментариев: 1 Оценило: 2 человек Средний балл: 3.5 Оценка: неизвестно     Скачать

1)Дифференциальное уравнение. Общее решение. Частное решение. Задача Коши

Диф.ур-м наз-ся ур-е , связывающее независим.перем. х сикомую ф-ию у, и ее производные.

.

. => ОДУ

.

Общим решением ОДУ первого порядка назся ф-ия , удовл.след.условиям:

1) явл.решением ур-я при

2)∃ такое значение произв.пост. , при котором удовл.данному нач.условию. -общий интеграл

Частн.решением обыкн.диф.ур-я первого порядка наз-ся ф-ия кот.получ.из общего решения ) при конкретном значении с.

Задача Коши - задача нахождения обыкнов. диф.ур-я удовлет. начальному условию

2)Уравнение с разделяющимися переменными.

Наз-ся обыкновенное уравнеие1 порядка, кот.прив.к виду:

К ним относ. диф.ур.вида:

1) 2) умножим на =>

.- ур-е с раздел.перем.

3)Однородные уравнения. Уравнения, приводящиеся к однородным

Ф-ия наз-ся однород.ф-ей порядка или n-ой измерениями относительно переем если при .

. аргументом явл.дробь.

4)Уравнения в полных дифференциалах. Интегрирующий множитель

.Ур-е наз-ся ур-ем в полных диф.если сущ-ет такоя ф-ия

.

5)Линейное дифференциальное уравнение первого порядка

ДУ 1 порядка наз-ся линейным, если его можно записать в виде – заданные ф-ии, в частности – постоянные.

а)Метод Бернулли

Решение ур-яищется в виде произведения двух других ф-ий, т.е. сРер помощью подстановки – неизвестные ф-ии х, причем одна из них произвольна (но ≠0) – днйствительно любую ф-ию у(х) можно записать как:

, ).Тогда Подставляя выражение у и у’ в получаем: Подберем ф-ю так что бы

. Итак, , интегрируя получаем:

Ввиду свободы выбора ф-ии можно принять с=1=> v=

Подставляя найденную ф-ию в ур-е получаем: .

Получено уравнение с раздел.перем.Решаем его:

.

Возвращаясь к переменной у, получеам решение исходного ДУ

.сходного ДУ переменной у, получаем решение го поля. Нахождение потенциала по заданному примеру.

б)Метод Лагранжа

Рассмотрим однородное уравнение . Очевидно, это уравнение с разделяющимися переменными, его решение:

Решения исходного уравнения будем искать в виде:

Подставив полученное решение в исходное уравнение: , получаем: cгде c1 — произвольная константа.

Таким образом, решение исходного уравнения можно получить путем подстановки c(x) в решение однородного уравнения: .

6)Уравнение Бернулли

Ур-е вида

Если n=0, то ДУ – линейное, а при n=1 – с раздел.переменными.

Данное ур-е решается двумя способами:

Первый способ

Заменой

, уравнение приводится к линейному и может быть решено методом Лагранжа (вариации постоянной) или методом интегрирующего множителя.

Второй способ

Заменим .

Тогда .

Подберем так, чтобы было

.

для этого достаточно решить уравнение с разделяющимися переменными 1-го порядка.

После этого для определения получаем уравнение

- уравнение с разделяющимися переменными.

7)Уравнение неразрешенное относительно Метод введения параметра

– относительно производной

a)

б)

в)

.

где 𝜑и 𝜓известные ф-ии от наз-ся ур-ем Лагранжа.

Введем вспомогат.параметр, положив у’=p. Тогда ур-е примет вид: у=𝜑(p)+𝜓(p). Дифференц.по х, получим:

, т.е. или - линейное ур-е относит.неизвестной , решив его найдем: . Исключая параметр р из и получаем общий интеграл ур-я в виде . При делении на могли быть потеря решения, для которых ,т.е. . Это значение явл.корнем ур-я . Решение явл.особым для ур-я

г)Уравнение Клеро

Рассмотрим частный случай уравнения Лагранжа при Уравнение принимает вид

и называется урaвнeниeм Клеро. Положив , получаем:

.

Дифференцируя по х, имеем: или .

Если , то . Поэтому, с учетом , ДУ имеет общее решение .

Если, получаем частное решение уравнения в параметрической форме:

.

Это решение - особое решение уравнения Клеро: оно не содержится в формуле общего решения уравнения.

8)Особое решение

9)Линейное уравнение n -го порядка. Запись с помощью L . Свойства

,.

.

Если коэф. непрер.,то т.осущ.и един.доказана.

Линейный диф.оператор(ЛДО): , то

Св-ва:

1); 2); 3) .

10)Линейная независимость функции. Определитель Вронского. Теорема линейной зависимости .

Функции называются линейно независимыми на интервале если равенство , где , выполняется тогда и только тогда,

когда

Средством изучения линейной зависимости сестемы ф-ий явл.так называемый определитель Вронсоко или вронскиан. Для двух диф.ф-ий вронскиан имеет вид:

.

Теорема лин. зависимости : Если диф.ф-ии лин.зависимы на , то определитель Вронского на этом интервале тождественно равен нулю.

Так как функции линейно зависимы, то в равенстве значение отлично от нуля. Пусть , тогда поэтому для любого

.

11)Если линейно независимы Доказательство

Если функции - линейно независимые решения уравнения на то определитель Вронского на этом интервале нигде не обращается в нуль.

Из теоремы следует, что вронскиан не равен нулю ни в одной точке интервала ( a ; b ) тогда и только тогда, когда частные решения линейно независимы.

12 Фундаментальная система решений. Теорема существования фундаментальной системы решений. Доказательство

Фундаментальная система решений (ФСР) представляет собой набор линейно независимых решений однородной системы уравнений.

Совокупность любых двух линейно независимых на интервале (a; b) частных решений ЛОДУ второго порядка определяет фундаментальную систему решений этого уравнения: любое произвольное решение может быть получено как комбинация

Теорема (о ФСР)

Если два частных решения ЛОДУ образуют на интервале (а;b) фундаментальную систему, то общим решением этого уравнения является функция

, где и - произвольные постоянные.

13) Построение общего решения ЛОДУ

13.Построение общего решения ЛНДУ.

14.ЛДУ n- го порядка с постоянным коэффициентом. Общее решение. ЛОДУ, характеристические мн-н. Корни простые.

15.ЛОДУ, характеристические мн-н. Корни кратные.

16.ЛНДУ. Метод подбора частного решения.

18. Системы ДУ. Метод сведения к ДУ n-го порядка.

19.Системы ДУ. Метод интегрируемых комбинаций.

20. Система ЛДУ. Матричная запись. Свойства

21 Зависимые и независимые решения. Определитель Вронского.

22.Система ЛОДУ. Свойства

23.Фундаментальная система решений. Построение общего решения.

24.ЛН системы. Метод вариаций.

25.Л О системы с постоянным коэффициентом. Метод Эйлера.

уравнение линейный решение бернулли



Оценить/Добавить комментарий:
Имя:

Оценка:
Неудовлетворительно
Удовлетворительно
Хорошо
Отлично
Комментарии:
y'(t)-1/14*y(t)=-9t
14:51:03 30 августа 2012

Работы, похожие на Контрольная работа: Решение дифференциальных уравнений
Суть и функции менеджмента
2. Природа и состав функций менеджмента В общем виде, функция - это совокупность действий, направленных на достижение частной цели и в то же время ...
Общие функции - это такие виды деят-ти, которые не связаны с особой спецификой объекта упр-ия и явл-ся общими для всех органов управле-ния.
ФИ - ПИ - Р - Пр - С - ОС - ПП - М - Сб, Где ФИ- фундаментальное (теорет-ое) исслед-ие; ПИ-прикладные исслед-ия; Р-разработка; Пр - проектирование; С - строит-во; ОС - освоение; ПП ...
Раздел: Рефераты по менеджменту
Тип: шпаргалка Просмотров: 1574 Комментариев: 0 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Шпаргалки по геометрии, алгебре, педагогике, методике математики (ИГПИ ...
Кольцом называется числ. множ. На котором выполняются три опер-ии: слож, умнож, вычит. Полем наз. Числ множ. На котором выполняются 4 операции: слож ...
2-е с-ы лин-х урназ-ся равносильными, если Ґ реш-е Ґ из этих с-м явл-ся реш-м другой с-ы. Элемен-е преобр-я: 1) перестан-ка 2 ур-й в с-е. 2) умнож-е обих частей ур-я на =0 ...
Систем-ое изуч-ие тожде-ых преобр-ий нач-ся в 7 кл. в теме "Выраж-ия, тож-ва, урав-ия", кот-ое явл-ся связующим звеном между курсом алгебры и курсом математики 5-6 кл.
Раздел: Рефераты по математике
Тип: реферат Просмотров: 2944 Комментариев: 1 Похожие работы
Оценило: 3 человек Средний балл: 3 Оценка: неизвестно     Скачать
Шпоры по финансовому менеджменту
Билет 1 1. Сущ-ть, содерж-е и виды фин. рисков Под фин риском предп-ия поним вероятность возник-ия неблагоприятных фин последствий в форме потери ...
Основ причинами явл:-низкий ур жизни больш части населения;эк-кая конъюнктура, из-за к-ой сбережения населения не явл устойч-ым ресурсом (инфляция не дает вкладывать ср-ва на длит ...
Чтобы получить обоснованный прогноз по м-ду пропорц-ой завис-ти показ-лей от V реализации, нужно каждую пропорц-но меняющуюся статью актива и пассива увелич в той же пропорции, в к ...
Раздел: Рефераты по менеджменту
Тип: реферат Просмотров: 5209 Комментариев: 1 Похожие работы
Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать
Шпаргалки на экзамен в ВУЗе (1 семестр, математика)
1) Основные понятия линейной алгебры. Задачи о перевозках. Элементы линейной алгебры. Задачи о перевозках. На 2-х складах А1 и А2 сосредоточено а1, а2 ...
Необходимо, чтобы все уравнения были линейно независимы, т.е. ни одно уравнение не являлось бы линейной комбинацией остальных.Для этого необходимо, чтобы определитель матрицы ...
7)Система линейных Ур-ий.Теорема Кронекра-Капели.
Раздел: Рефераты по математике
Тип: реферат Просмотров: 2897 Комментариев: 0 Похожие работы
Оценило: 2 человек Средний балл: 2 Оценка: неизвестно     Скачать
Шпоры по Госам МСХА
ЭКОНОМИЧЕСКАЯ ТЕОРИЯ 1. Эк теория и ее структура. Она состоит из общих основ эк теории, микрои макроэкономики и интерэкономики (мировой экономики). В ...
Если статис-ий массив достаточно представителен, то частоту возник-я данного ур-ня потерь можно приравнять к вероят-ти их возник-ния и на этой основе построить кривую вероятностей ...
Обслуживание процесса воспроиз-ва во всех сферах АПК осущ-ся отраслями инфраструктуры.Все 3 сферы АПК требуют сбалансиров-ти м/ду собой,что м.б. достигнуто с помощью единого ...
Раздел: Остальные рефераты
Тип: реферат Просмотров: 2676 Комментариев: 2 Похожие работы
Оценило: 4 человек Средний балл: 3.3 Оценка: неизвестно     Скачать
Ряды
Фун 2 числовых аргументов. Пусть имеется Е (х1;у1) - элементы принадлеж точке Е Сущ закон или правило по которому каж точке (xi;yi) ставится в соот-е ...
Общий вид диф ур F(x;y;y";у".уn)=0. Наивысший порядок производ-й в ур-и F(x;y;y";у".уn)=0 наз порядковым ур-ем.
y"+P(x)y=Q(x)yn, P(x) и Q(x) - непрерывные фун. от x (или пост.) n10,1. Это урназ ур Бернулли, приводится к линейному следующим преобразованием.
Раздел: Рефераты по математике
Тип: шпаргалка Просмотров: 994 Комментариев: 0 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Дифференциальные уравнения и описание непрерывных систем
... университет Кафедра Автоматики и управления Реферат по математическим основам теории систем на тему Дифференциальные уравнения и описание ...
Теорема существования и единственности справедлива для линейной системы на любом отрезке [а1 ,b1]I(а, b), где (a, b) - интервал, на котором функции aik(t) и fi(t) непрерывны.
Это выражение представляет собой систему линейных алгебраических уравнений относительно сi(t) (i=l, 2, ,..., n). Определитель этой системы уравнений есть определитель Вронского для ...
Раздел: Рефераты по информатике, программированию
Тип: реферат Просмотров: 716 Комментариев: 0 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Устойчивость систем дифференциальных уравнений
... Кафедра №2 Курсовая работа по дисциплине "Специальные разделы математики" Тема: "Устойчивость систем дифференциальных уравнений" Студент: Новичков
Фундаментальной матрицей линейной однородной системы называется матричная функция (t), определитель которой отличен от нуля и столбцы которой являются решениями системы:
Так как , где - собственные числа матрицы , а - мультипликаторы линейного уравнения , называемые также мультипликаторами периодического решения , то из теорем 5 и 6 вытекает ...
Раздел: Рефераты по математике
Тип: реферат Просмотров: 1397 Комментариев: 0 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Все работы, похожие на Контрольная работа: Решение дифференциальных уравнений (923)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(59999)
Комментарии (994)
Copyright © 2005-2014 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru