Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Предел и непрерывность функций нескольких переменных

Название: Предел и непрерывность функций нескольких переменных
Раздел: Рефераты по математике
Тип: реферат Добавлен 09:16:49 24 октября 2010 Похожие работы
Просмотров: 2763 Комментариев: 4 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Кафедра: Высшая математика

Реферат

по дисциплине «Высшая математика»

Тема: «Предел и непрерывность функций нескольких переменных»

Тольятти, 2008

Введение

Понятие функции одной переменной не охватывает все зависимости, существующие в природе. Даже в самых простых задачах встречаются величины, значения которых определяются совокупностью значений нескольких величин.

Для изучения подобных зависимостей вводится понятие функции нескольких переменных.


Понятие функции нескольких переменных

Определение. Величина u называется функцией нескольких независимых переменных (x , y , z , …, t ), если каждой совокупности значений этих переменных ставится в соответствие определенное значение величины u .

Если переменная является функцией от двух переменных х и у , то функциональную зависимость обозначают

z = f ( x , y ).

Символ f определяет здесь совокупность действий или правило для вычисления значения z по данной паре значений х и у .

Так, для функции z = x 2 + 3xy

при х = 1 и у = 1 имеем z = 4,

при х = 2 и у = 3 имеем z = 22,

при х = 4 и у = 0 имеем z = 16 и т.д.

Аналогично называется величина u функцией от трех переменных x , y , z , если дано правило, как по данной тройке значений x , y иz вычислить соответствующее значение u :

u = F ( x , y , z ).

Здесь символ F определяет совокупность действий или правило для вычисления значения u , соответствующего данным значениям x , y иz .

Так, для функции u = xy + 2xz 3yz

при х = 1, у = 1 и z = 1 имеем u = 0,

при х = 1, у = -2 и z = 3 имеем u = 22,

при х = 2, у = -1 и z = -2 имеем u = -16 и т.д.

Таким образом, если в силу некоторого закона каждой совокупности п чисел (x , y , z , …, t ) из некоторого множества Е ставится в соответствие определенное значение переменной u , то и u называется функцией от п переменных x , y , z , …, t , определенной на множестве Е , и обозначается

u = f (x , y , z , …, t ).

Переменные x , y , z , …, t называются аргументами функции, множество Е – областью определения функции.

Частным значением функции называется значение функции в некоторой точке М 0 (x 0 , y 0 , z 0 , …, t 0 ) и обозначается f (М 0 ) = f (x 0 , y 0 , z 0 , …, t 0 ).

Областью определения функции называется множество всех значений аргументов, которым соответствуют какие-либо действительные значения функции.

Функция двух переменных z = f ( x , y ) в пространстве представляется некоторой поверхностью. То есть, когда точка с координатами х , у пробегает всю область определения функции, расположенную в плоскости хОу , соответствующая пространственная точка, вообще говоря, описывает поверхность.

Функцию трех переменных u = F ( x , y , z ) рассматривают как функцию точки некоторого множества точек трехмерного пространства. Аналогично, функцию п переменных u = f (x , y , z , …, t ) рассматривают как функцию точки некоторого п -мерного пространства.

Предел функции нескольких переменных

Для того чтобы дать понятие предела функции нескольких переменных, ограничимся случаем двух переменных х и у . По определению функция f ( x , y ) имеет предел в точке (х 0 , у 0 ), равный числу А , обозначаемый так:


(1)

(пишут еще f ( x , y )А при ( x , y ) → (х 0 , у 0 )), если она определена в некоторой окрестности точки (х 0 , у 0 ), за исключением, быть может, самой этой точки и если существует предел

(2)

какова бы ни была стремящаяся к (х 0 , у 0 ) последовательность точек (xk , yk ).

Так же, как в случае функции одной переменной, можно ввести другое эквивалентное определение предела функции двух переменных: функция f имеет в точке (х 0 , у 0 ) предел, равный А , если она определена в некоторой окрестности точки (х 0 , у 0 ) за исключением, быть может, самой этой точки, и для любого ε > 0 найдется такое δ > 0, что

| f ( x , y )A | < ε(3)

для всех ( x , y ) , удовлетворяющих неравенствам

0 < < δ. (4)

Это определение, в свою очередь, эквивалентно следующему: для любого ε > 0 найдется δ-окрестность точки (х 0 , у 0 ) такая, что для всех (x , y ) из этой окрестности, отличных от (х 0 , у 0 ), выполняется неравенство (3).

Так как координаты произвольной точки (x , y ) окрестности точки (х 0 , у 0 ) можно записать в виде х = х 0 + Δх , у = у 0 + Δу , то равенство (1) эквивалентно следующему равенству:

Рассмотрим некоторую функции, заданную в окрестности точки (х 0 , у 0 ), кроме, быть может, самой этой точки.

Пусть ω = (ωх , ωу ) – произвольный вектор длины единица (|ω|2 = ωх 2 + ωу 2 = 1) и t > 0 – скаляр. Точки вида

(х 0 + t ωх , y 0 + t ωу ) (0 < t )

образуют луч, выходящий из (х 0 , у 0 ) в направлении вектора ω. Для каждого ω можно рассматривать функцию

f (х 0 + t ωх , y 0 + t ωу ) (0 < t < δ)

от скалярной переменной t , где δ – достаточно малое число.

Предел этой функции (одной переменной t )

f (х 0 + t ωх , y 0 + t ωу ),

если он существует, естественно называть пределом f в точке (х 0 , у 0 ) по направлению ω.

Пример 1. Функции


определены на плоскости (x , y ) за исключением точки х 0 = 0, у 0 = 0. Имеем (учесть, что и ):

Отсюда

(для ε > 0 полагаем δ = ε/2 и тогда |f ( x , y ) | < ε, если < δ).

Далее, считая, что k – постоянная, имеем для y = kx равенство

из которого видно, что предел φ в точке (0, 0) по разным направлениям вообще различен (единичный вектор луча y = kx , х > 0, имеет вид

).

Пример 2. Рассмотрим в R 2 функцию

(х 4 + у 2 ≠ 0).

Данная функция в точке (0, 0) на любой прямой y = kx , проходящей через начало координат, имеет предел, равный нулю:


при х → 0.

Однако эта функция не имеет предела в точки (0, 0), ибо при у = х 2

и

Будем писать , если функция f определена в некоторой окрестности точки (х 0 , у 0 ), за исключением, быть может, самой точки (х 0 , у 0 ) и для всякого N > 0 найдется δ > 0 такое, что

|f ( x , y ) | > N ,

коль скоро 0 < < δ.

Можно также говорить о пределе f , когда х , у → ∞:

(5)

Например, в случае конечного числа А равенство (5) надо понимать в том смысле, что для всякого ε > 0 найдется такое N > 0, что для всех х , у , для которых |x | > N , |y | > N , функция f определена и имеет место неравенство

|f ( x , y )А | < ε.

Справедливы равенства


(6)

(7)

(8)

где может быть х → ∞, у → ∞. При этом, как обычно, пределы (конечные) в их левых частях существуют, если существуют пределы f и φ.

Докажем для примера (7).

Пусть (xk , yk ) → (х 0 , у 0 ) ((xk , yk ) ≠ (х 0 , у 0 )); тогда

(9)

Таким образом, предел в левой части (9) существует и равен правой части (9), а так как последовательность (xk , yk ) стремится к (х 0 , у 0 ) по любому закону, то этот предел равен пределу функции f ( x , y ) ∙φ ( x , y ) в точке (х 0 , у 0 ).

Теорема. если функция f ( x , y ) имеет предел, не равный нулю в точке (х 0 , у 0 ), т.е.

то существует δ > 0 такое, что для всех х , у , удовлетворяющих неравенствам

0 < < δ, (10)


она удовлетворяет неравенству

(12)

Поэтому для таких ( x , y )

т.е. имеет место неравенство (11). Из неравенства (12) для указанных ( x , y ) следует откуда при A > 0 и при

A < 0 (сохранение знака).

По определению функция f ( x ) = f ( x 1 , …, xn ) = A имеет предел в точке

x 0 = , равный числу А , обозначаемый так:

(пишут еще f ( x )A (xx 0 )), если она определена на некоторой окрестности точки x 0 , за исключением, быть может, ее самой, и если существует предел

какова бы ни была стремящаяся к x 0 последовательность точек х k из указанной окрестности (k = 1, 2, ...), отличных от x 0 .

Другое эквивалентное определение заключается в следующем: функция f имеет в точке x 0 предел, равный А , если она определена в некоторой окрестности точки x 0 , за исключением, быть может, ее самой, и для любого ε > 0 найдется такое δ > 0, что

(13)

для всех х , удовлетворяющих неравенствам

0 < |x x 0 | < δ.

Это определение в свою очередь эквивалентно следующему: для любого ε > 0 найдется окрестность U ( x 0 ) точки x 0 такая, что для всех х U ( x 0 ) , хx 0 , выполняется неравенство (13).

Очевидно, что если число А есть предел f ( x ) в x 0 , то А есть предел функции f ( x 0 + h ) от h в нулевой точке:

и наоборот.

Рассмотрим некоторую функцию f , заданную во всех точках окрестности точки x 0 , кроме, быть может, точки x 0 ; пусть ω = (ω1 , ..., ωп ) – произвольный вектор длины единица (|ω| = 1) и t > 0 – скаляр. Точки вида x 0 + t ω (0 < t ) образуют выходящий из x 0 луч в направлении вектора ω. Для каждого ω можно рассматривать функцию

(0 < t < δω )

от скалярной переменной t , где δω есть число, зависящее от ω. Предел этой функции (от одной переменной t )


если он существует, естественно называть пределом f в точке x 0 по направлению вектора ω.

Будем писать , если функция f определена в некоторой окрестности x 0 , за исключением, быть может, x 0 , и для всякого N > 0 найдется δ > 0 такое, что |f ( x ) | >N , коль скоро 0 < |x x 0 | < δ.

Можно говорить о пределе f , когда х → ∞:

(14)

Например, в случае конечного числа А равенство (14) надо понимать в том смысле, что для всякого ε > 0 можно указать такое N > 0, что для точек х , для которых |x | > N , функция f определена и имеет место неравенство .

Итак, предел функции f ( x ) = f ( x 1 , ..., хп ) от п переменных определяется по аналогии так же, как для функции от двух переменных.

Таким образом, перейдем к определению предела функции нескольких переменных.

Число А называется пределом функции f ( M ) при ММ 0 , если для любого числа ε > 0 всегда найдется такое число δ > 0, что для любых точек М , отличных от М 0 и удовлетворяющих условию | ММ 0 | < δ, будет иметь место неравенство |f ( M )А | < ε.

Предел обозначают В случае функции двух переменных

Теоремы о пределах. Если функции f 1 ( M ) и f 2 ( M ) при ММ 0 стремятся каждая к конечному пределу, то:

а)

б)

в)

Пример 1. Найти предел функции:

Решение. Преобразуем предел следующим образом:

Пусть y = kx , тогда

Пример 2. Найти предел функции:

Решение. Воспользуемся первым замечательным пределом Тогда

Пример 3. Найти предел функции:

Решение. Воспользуемся вторым замечательным пределом Тогда


Непрерывность функции нескольких переменных

По определению функция f ( x , y ) непрерывна в точке (х 0 , у 0 ), если она определена в некоторой ее окрестности, в том числе в самой точке (х 0 , у 0 ) и если предел f ( x , y ) в этой точке равен ее значению в ней:

(1)

Условие непрерывности f в точке (х 0 , у 0 ) можно записать в эквивалентной форме:

(1')

т.е. функция f непрерывна в точке (х 0 , у 0 ), если непрерывна функция f 0 + Δх , у 0 + Δу) от переменных Δх , Δу при Δх = Δу = 0.

Можно ввести приращение Δи функции и = f ( x , y ) в точке ( x , y ) , соответствующее приращениям Δх , Δу аргументов

Δи = f + Δх , у + Δу)f ( x , y )

и на этом языке определить непрерывность f в ( x , y ) : функция f непрерывна в точке ( x , y ) , если

(1'')

Теорема. Сумма, разность, произведение и частное непрерывных в точке (х 0 , у 0 ) функций f и φ есть непрерывная функция в этой точке, если, конечно, в случае частного φ (х 0 , у 0 ) ≠ 0.

Постоянную с можно рассматривать как функцию f ( x , y ) = с от переменных x , y . Она непрерывна по этим переменным, потому что

|f ( x , y )f (х 0 , у 0 ) | = |с – с | = 0 0.

Следующими по сложности являются функции f ( x , y ) = х и f ( x , y ) = у . Их тоже можно рассматривать как функции от ( x , y ) , и при этом они непрерывны. Например, функция f ( x , y ) = х приводит в соответствие каждой точке ( x , y ) число, равное х . Непрерывность этой функции в произвольной точке ( x , y ) может быть доказана так:

| f + Δх , у + Δу)f ( x , y ) | = |f + Δх) – х | = | Δх | ≤ 0.

Если производить над функциями x , y и постоянными действия сложения, вычитания и умножения в конечном числе, то будем получать функции, называемые многочленами от x , y . На основании сформулированных выше свойств многочлены от переменных x , y – непрерывные функции от этих переменных для всех точек ( x , y ) R 2 .

Отношение P / Q двух многочленов от ( x , y ) есть рациональная функция от ( x , y ) , очевидно, непрерывная всюду на R 2 , за исключением точек ( x , y ) , где Q ( x , y ) = 0.

Функция

Р ( x , y ) = х 3у 2 + х 2 у – 4

может быть примером многочлена от ( x , y ) третьей степени, а функция

Р ( x , y ) = х 4 – 2х 2 у 2 + у 4

есть пример многочлена от ( x , y ) четвертой степени.

Приведем пример теоремы, утверждающей непрерывность функции от непрерывных функций.

Теорема. Пусть функция f ( x , y , z ) непрерывна в точке ( x 0 , y 0 , z 0 ) пространства R 3 (точек ( x , y , z ) ), а функции

x = φ(u, v), y = ψ(u, v), z = χ(u, v)

непрерывны в точке ( u 0 , v 0 ) пространства R 2 (точек ( u , v ) ). Пусть, кроме того,

x 0 = φ ( u 0 , v 0 ), y 0 = ψ ( u 0 , v 0 ), z 0 = χ ( u 0 , v 0 ) .

Тогда функция F ( u , v ) = f [ φ ( u , v ), ψ ( u , v ), χ ( u , v ) ] непрерывна (по

( u , v ) ) в точке ( u 0 , v 0 ) .

Доказательство. Так как знак предела можно внести под знак характеристики непрерывной функции, то

Теорема. Функция f ( x , y ) , непрерывная в точке (х 0 , у 0 ) и не равная нулю в этой точке, сохраняет знак числа f (х 0 , у 0 ) в некоторой окрестности точки (х 0 , у 0 ).

По определению функция f ( x ) = f ( x 1 , ..., хп ) непрерывна в точке х 0 = 0 1 , ..., х 0 п ) , если она определена в некоторой ее окрестности, в том числе и в самой точке х 0 , и если предел ее в точке х 0 равен ее значению в ней:


(2)

Условие непрерывности f в точке х 0 можно записать в эквивалентной форме:

(2')

т.е. функция f ( x ) непрерывна в точке х 0 , если непрерывна функция f 0 + h ) от h в точкеh = 0.

Можно ввести приращение f в точке х 0 , соответствующее приращению h = ( h 1 , ..., h п ) ,

Δh f 0 ) = f 0 + h )f 0 )

и на его языке определить непрерывность f в х 0 : функция f непрерывна в х 0 , если

(2'')

Теорема. Сумма, разность, произведение и частное непрерывных в точке х 0 функций f ( x ) и φ ( x ) есть непрерывная функция в этой точке, если, конечно, в случае частного φ 0 ) ≠ 0.

Замечание. Приращение Δh f 0 ) называют также полным приращением функции f в точке х 0 .

В пространстве Rn точек х = ( x 1 , ..., хп ) зададим множество точек G .

По определению х 0 = 0 1 , ..., х 0 п ) есть внутренняя точка множества G , если существует открытый шар с центром в нем, полностью принадлежащий к G .

Множество G Rn называется открытым, если все его точки внутренние.

Говорят, что функции

х 1 = φ1 (t) , ..., хп = φп (t) (a ≤ t ≤ b)

непрерывные на отрезке [a , b ], определяют непрерывную кривую в Rn , соединяющую точки х 1 = 1 1 , ..., х 1 п ) и х 2 = 2 1 , ..., х 2 п ) , где х 1 1 = φ1 (а) , ..., х 1 п = φп (а) , х 2 1 = φ1 ( b ) , ..., х 2 п = φп ( b ) . Букву t называют параметром кривой.

Множество G называется связным, если любые его две точки х 1 , х 2 можно соединить непрерывной кривой, принадлежащей G .

Связное открытое множество называется областью.

Теорема. Пусть функция f ( x ) определена и непрерывна на Rn (во всех точках Rn ). Тогда множество G точек х , где она удовлетворяет неравенству

f ( x ) > с (или f ( x ) < с ), какова бы ни была постоянная с , есть открытое множество.

В самом деле, функция F ( x ) = f ( x )с непрерывна на Rn , и множество всех точек х , где F ( x ) > 0, совпадает с G . Пусть х 0 G , тогда существует шар

| х х 0 | < δ,

на котором F ( x ) > 0, т.е. он принадлежит к G и точка х 0 G – внутренняя для G .

Случай с f ( x ) < с доказывается аналогично.

Таким образом, функция нескольких переменных f (М) называется непрерывной в точке М 0 , если она удовлетворяет следующим трем условиям:

а) функция f (М) определена в точке М 0 и вблизи этой точки;

б) существует предел ;

в)


Если в точке М 0 нарушено хотя бы одно из этих условий, то функция в этой точке терпит разрыв. Точки разрыв могут образовывать линии разрыва, поверхность разрыва и т. д. Функция f (М) называется непрерывной в области G , если она непрерывна в каждой точке этой области.

Пример 1. Найти точки разрыва функции: z = ln ( x 2 + y 2 ) .

Решение. Функция z = ln ( x 2 + y 2 ) терпит разрыв в точке х = 0, у = 0. Следовательно, точка О (0, 0) является точкой разрыва.

Пример 2. Найти точки разрыва функции:

Решение. Функция не определена в точках, в которых знаменатель обращается в нуль, т.е. x 2 + y 2z 2 = 0. Следовательно, поверхность конуса

x 2 + y 2 = z 2 является поверхностью разрыва.


Заключение

Начальные сведения о пределах и непрерывности встречаются в школьном курсе математики.

В курсе математического анализа понятие предела является одним из основных. С помощью предела вводятся производная и определенный интеграл; пределы же являются основным средством в построении теории рядов. Понятие предела, впервые появившееся в 17 веке в работах Ньютона, используется и получает дальнейшее развитие в теории рядов. В этом разделе анализа исследуются вопросы, связанные с суммой бесконечной последовательности величин (как постоянных, так и функций).

Непрерывность функции дает представление о ее графике. Это означает, что график есть сплошная линия, а не состоит из отдельных разрозненных участков. Это свойство функции находит широкое применение в сфере экономики.

Поэтому понятия предела и непрерывности играют важную роль в исследовании функций нескольких переменных.


Список использованной литературы

1. Бугров Я.С., Никольский С.М. Высшая математика: Учебник для вузов. Том 2: Дифференциальное и интегральное исчисление. Москва: Дрофа, 2004 год, 512 с.

2. Кремер Н.Ш., Путко Б.А., Тришин И.М., Фридма М.Н. Высшая математика для экономистов. Москва: Юнити, 2000 год, 271 с.

3. Черненко В.Д. Высшая математика в примерах и задачах. Учебное пособие для вузов. Санкт-Петербург: Политехника, 2003 год, 703 с.

4. http://elib.ispu.ru/library/math/sem2/index.html

5. http://www.academiaxxi.ru/WWW_Books/HM/Fn/toc.htm

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:55:18 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
16:07:51 29 ноября 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
09:56:43 29 ноября 2015
по проще нету
оля16:14:40 10 декабря 2012

Работы, похожие на Реферат: Предел и непрерывность функций нескольких переменных

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150304)
Комментарии (1830)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru