Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Элементы теории вероятностей. Случайные события

Название: Элементы теории вероятностей. Случайные события
Раздел: Рефераты по математике
Тип: контрольная работа Добавлен 08:03:26 16 февраля 2011 Похожие работы
Просмотров: 11470 Комментариев: 2 Оценило: 4 человек Средний балл: 4.3 Оценка: неизвестно     Скачать

Цель изучения - развить навыки составления и анализа математических моделей несложных задач прикладного характера, связанных со случайными явлениями, научить способам вычисления вероятностей простых и сложных событий, методам оценки неизвестных параметров на основе экспериментальных данных, методам проверки гипотез и правилам принятия решений.

Данная тема включает в себя:

· Основные понятия и определения.

· Действия над случайными событиями.

· Классическое определение вероятности.

· Свойства вероятностей.

· Случайные величины.

Изучив эту тему, студент должен:

Знать:

· правила вычисления вероятностей случайных событий;

· способы определения и построения законов распределения вероятностей случайных величин и вычисления их числовых характеристик.

Уметь:

· вычислять вероятности простых и сложных событий;

· находить необходимые характеристики случайных величин по известным законам.

При изучении темы необходимо:

·читать главу 11,12 из учебника «Математика и информатика» (Турецкий В.Я.).

Задача 1.

В розыгрыше кубка страны по футболу берут участие 17 команд. Сколько существует способов распределить золотую, серебряную и бронзовую медали?

Решение:

Поскольку медали не равноценны, то количество способов распределить золотую, серебряную и бронзовую медали среди команд будет равно числу размещений из 17-ти элементов по 3, т.е. = 4080.

Задача 2.

Произведено три выстрела по мишени. Рассматриваются такие элементарные события: А – попадание в мишень при i -том выстреле; – промах по мишени при i -том выстреле. Выразить через А и следующие события:

А – все три попадания; В – ровно два попадания; С – все три промаха; D – хотя бы одно попадание; Е – больше одного попадания; F – не больше одного попадания.

Решение:

А – все три попадания, т.е. совместное появления трех событий А1 , А2 и А3

Р(А) = Р(А1 и А2 и А3 )

В – ровно два попадания, т.е. два попадания и один промах


Р(В) = Р( 1 и А2 и А3 или А1 и 2 и А3 или А1 и 2 и А3 )

С – все три промаха, т.е. совместное появления трех событий 1 и 2 , 3

Р(С) = Р( 1 и 2 и 3 )

D – хотя бы одно попадание, т.е. или одно попадание, или два попадания или три попадания

Р(D) = Р( 1 и 2 и А3 или 1 и А 2 и 3 или А1 и 2 и 3 ИЛИ 1 и А2 и А3 или А1 и 2 и А3 или А1 и 2 и А3 ИЛИ А1 и А2 и А3 )

или по формуле

Р(D) = 1 – Р( 1 и 2 и 3 )

Е – больше одного попадания, т.е. или два попадания или три попадания

Р(Е) = Р( 1 и А2 и А3 или А1 и 2 и А3 или А1 и 2 и А3 или А1 и А2 и А3 )

F – не больше одного попадания, т.е. одно попадание и два промаха

Р(F) = Р( 1 и 2 и А3 или 1 и А 2 и 3 или А1 и 2 и 3 )

Задача 3.

Игральный кубик бросают два раза. Описать пространство элементарных событий. Описать события: А – сумма появившихся очков равна 8; В – по крайней мере один раз появится 6.

Решение:

Будем считать пространством элементарных событий множество пар чисел (i , j ), где i (соответственно j ) есть число очков, выпавших при первом (втором) подбрасывании, тогда множество элементарных событий будет таким:

W={(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)}

А – сумма появившихся очков равна 8. Этому событию благоприятствуют такие элементарные события А={(2,6) (6,2) (5,3) (3,5) (4,4)}.

В – по крайней мере один раз появится 6. Этому событию благоприятствуют такие элементарные события В={(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (1,6) (2,6) (3,6) (4,6) (5,6)}.

Задача 4.

В вазе с цветами 15 гвоздик: 5 белых и 10 красных. Из вазы наугад вынимают 2 цветка. Какова вероятность того, что эти цветки: а) оба белые; б) оба красные; в) разного цвета; г) одного цвета.

Решение:

а) Пусть событие А состоит в том, что оба вынутых из вазы цветка белые.

Количество возможных способов взять 2 цветка из 15-ти равно , т.е. = 7×15 = 105, а количество возможных способов взять 2 белых цветка из 5-ти белых равно = 2×5 = 10. Тогда по классическому определению вероятность события А равна

.

б) Пусть событие В состоит в том, что оба вынутых из вазы цветка красные.

Количество возможных способов взять 2 цветка из 15-ти равно , т.е. = 7×15 = 105, а количество возможных способов взять 2 красных цветка из 10-ти красных равно = 9×5 = 45. Тогда по классическому определению вероятность события В равна

.

в) Пусть событие С состоит в том, что оба вынутых из вазы цветка разного цвета, т.е. один белый и один красный.

Количество возможных способов взять 2 цветка из 15-ти равно , т.е. = 7×15 = 105, а количество возможных способов взять 1 красный цветок из 10-ти красных И 1 белый цветок из 5-ти белых равно * = 10×5 = 50. Тогда по классическому определению вероятность события С равна

.

г) Пусть событие D состоит в том, что оба вынутых из вазы цветка одного цвета, т.е. или оба белые (событие А) или оба красные (событие В). По теореме сложения независимых событий вероятность события D будет равна

Р(D) = Р(А или В) = Р(А) + Р(В) = 0,095 + 0,43 = 0,525

Задача 5.

Из шести карточек с буквами I, С, К, Ь, Н, М наугад одну за другой вынимают и раскладывают в ряд в порядке появления. Какова вероятность того, что появится слово а) «НIС»; б) «CIM»?

Решение: (для пунктов а) и б) одинаково)

Каждый вариант получившегося «слова» является размещением из 6-ти элементов по 3. Число таких вариантов равно . Из этих вариантов правильным будет только один, т.е. m = 1, тогда по классическому определению вероятности

.

Задача 6.

Вероятность того, что в течении одной смены возникнет поломка станка равна 0,05. Какова вероятность того, что не возникнет ни одной поломки за три смены?

Решение:

Пусть событие А состоит в том, что в течении одной смены возникнет поломка станка. По условию задачи вероятность этого события равна Р(А) = 0,05. Противоположное событие состоит в том, что в течении одной смены поломка станка НЕ возникнет. Вероятность противоположного события

Р( ) = 1– Р(А) = 1 – 0,05 = 0,95.

Искомая вероятность равна

Р(В) = Р( и и ) = Р( )×Р( )×Р( )= 0,95×0,95×0,95 = 0,953 = 0,86

Задача 7.

Студент пришел на зачет зная только 30 вопросов из 50. Какова вероятность сдачи зачета, если после отказа отвечать на вопрос преподаватель задает еще один?

Решение:

Вероятность того, что преподаватель задал студенту вопрос, на который он не знал ответа (событие А) равна Р(А) = . Найдем вероятность того, что на второй вопрос преподавателя студент знает ответ (событие В) при условии, что ответа на первый вопрос студент не знал. Это условная вероятность, так как событие А уже произошло. Отсюда РА (В) = . Искомую вероятность определим по теореме умножения вероятностей зависимых событий.

Р(А и В) = Р(А)* РА (В) = = 0,24.

Задача 8.

С помощью наблюдений установлено, что в некоторой местности в сентябре в среднем бывает 12 дождливых дней. Какова вероятность того, что из наугад взятых в этом месяце 8-ми дней 3 будут дождливыми?

Решение:

Поскольку количество испытаний невелико (n = 8), то для нахождения вероятности того, что событие А появится точно k = 3 раза воспользуемся формулой Бернулли:

, где q = 1 – p

По условию задачи вероятность дождя равна p = 12/30 = 6/15, (в сентябре 30 дней).

Значит вероятность ясного дня равна q = 1 – p = 1 – 6/15 = 9/15.

»0,28.

Задача 9.

С помощью наблюдений установлено, что в некоторой местности в сентябре в среднем бывает 25 дней без дождя. Какова вероятность того, что 1-го и 2-го сентября дождя не будет?

Решение:

Вероятность того, что 1-го сентября дождя не будет (событие А) равна Р(А) = . Найдем вероятность того, что и 2-го сентября дождя не будет (событие В) при условии, что 1-го сентября дождя не было. Это условная вероятность, так как событие А уже произошло. Отсюда РА (В) = . Искомую вероятность определим по теореме умножения вероятностей зависимых событий.

Р(А и В) = Р(А)* РА (В) = = 0,7.

Задача 10.

В условиях задачи 8 найти вероятность наивероятнейшего числа дней без дождя. (Задача 8. С помощью наблюдений установлено, что в некоторой местности в сентябре в среднем бывает 12 дождливых дней. Какова вероятность того, что из наугад взятых в этом месяце 8-ми дней 3 будут дождливыми?)

Решение:

Число m 0 называется наивероятнейшим в n независимых испытаниях, если вероятность наступления события А при этом числе наибольшая.

n ·p q m 0 n ·p + p


По условию задачи 8 вероятность дня без дождя равна p = 9/15, значит вероятность дождливого дня равна q = 6/15. Составим неравенство

17,6 ≤m 0 ≤18,6 Þm 0 = 18

Наивероятнейшее число дней без дождя равно 18. Поскольку количество испытаний велико (n = 30) и нет возможности применить формулу Бернулли, то для нахождения вероятности наивероятнейшего числа дней без дождя воспользуемся локальной теоремой Лапласа:

и j(х ) – диф. функция Лапласа –Гаусса

Определим аргумент функции Лапласа-Гаусса х : .

По таблице значений функции Гаусса определяем, что j(0) = 0,3989. Теперь

» 0,15.

Задача 11.

Вероятность получения удачного результата при проведении сложного химического опыта равна 3/4. Найти вероятность шести удачных результатов в 10-ти опытах.

Решение:

Поскольку количество испытаний невелико ( n = 10), то для нахождения вероятности того, что событие А появится точно k = 6 раз воспользуемся формулой Бернулли:

, где q = 1 – p

По условию задачи p = 3/4, значит q = 1 – p = 1 – 3/4 = 1/4.

= » 0,146

Задача 12.

Вероятность рождения мальчика равна 0,515, девочки – 0,485. В некоторой семье шестеро детей. Найти вероятность того, что среди низ не больше двух девочек.

Решение:

Пусть событие А состоит в том, что в семье, где шестеро детей, не больше двух девочек, т.е. в указанной семье или одна девочка или две девочки или все мальчики. Поскольку количество испытаний невелико (n = 6), то для нахождения вероятности события А воспользуемся формулой Бернулли:

, где q = 1 – p

По условию задачи вероятность рождения девочки равна p = 0,485 и вероятность рождения мальчика равна q = 0,515, тогда искомая вероятность будет равна


Р(А) = Р6 (0) + Р6 (1) + Р6 (2) = + + = 0,018657 + 0,105421 + 0,248201 » 0,37228.

Задача 13.

Что вероятнее: выиграть у равносильного противника (включая ничью) три партии из пяти или пять из восьми?

Решение:

Вероятность выиграть у равносильного противника равна p = 0,5, соответственно вероятность проиграть у равносильного противника равна q = 1 – p = 1 – 0,5 = 0,5.

Найдем и сравним такие вероятность Р5 (3) и Р8 (5)

Поскольку количество испытаний невелико (n = 5 и n = 8), то для нахождения вероятности того, что событие А появится точно k = 3 раза (k = 8 раз) воспользуемся формулой Бернулли:

, где q = 1 – p

= 10×0,03125 = 0,3125;

= 0,2186.

Сравнивая полученные значения вероятностей Р5 (3) = 0,3125 > Р8 (5) = 0,2186 получаем, что вероятнее выиграть у равносильного противника три партии из пяти чем пять из восьми.

Задача 13А.

Из партии, в которой 25 изделий, среди которых 6 бракованных, случайным образом выбрали 3 изделия для проверки качества. Найти вероятность того, что: а) все изделия годные, б) среди выбранных изделий одно бракованное; в) все изделия бракованные.

Решение:

а) Пусть событие А состоит в том, что все выбранные изделия годные. Количество возможных способов взять 3 изделия из 25-ти равно , т.е. = 2300, а количество возможных способов взять 3 годных изделия из (25 – 6) = 19-ти годных равно = 1938. Тогда по классическому определению вероятность события А равна

.

б) Пусть событие В состоит в том, что среди выбранных изделий одно бракованное, т.е. одно бракованное и два годных. Количество возможных способов взять 3 изделия из 25-ти равно = 2300, а количество возможных способов взять одно бракованное изделие из 6-ти бракованных И два годных изделия из (25 – 6) = 19-ти годных равно * = 6×153 = 738. Тогда по классическому определению вероятность события В равна

.


в) Пусть событие С состоит в том, что все выбранные изделия бракованные. Количество возможных способов взять 3 изделия из 25-ти равно = 2300, а количество возможных способов взять 3 бракованные изделия из 6-ти бракованных равно = 20. Тогда по классическому определению вероятность события С равна

.

Задача 14.

В условиях задачи 13 найти наивероятнейшее число удачных опытов и вероятность его появления. (Задача 11. Вероятность получения удачного результата при проведении сложного химического опыта равна 3/4. Найти вероятность шести удачных результатов в 10-ти опытах).

Решение:

Число m 0 называется наивероятнейшим в n независимых испытаниях, если вероятность наступления события А при этом числе наибольшая.

n ·p q m 0 n ·p + p

По условию задачи 11 вероятность проведения удачного опыта равна p = 3/4, значит вероятность неудачного опыта равна q = 1/4. Количество опытов равно п = 10. Составим неравенство

7,25 ≤m 0 ≤8,25 Þm 0 = 8

Наивероятнейшее число удачных опытов равно 8. Поскольку количество испытаний невелико (n = 10), то для нахождения вероятности того, что событие А появится точно k = 8 раз воспользуемся формулой Бернулли:

, где q = 1 – p

= » 0,282.

Задача 15Б.

В белом ящике 12 красных и 6 синих шаров. В черном – 15 красных и 10 синих шаров. Бросают игральный кубик. Если выпадет количество очков, кратное 3, то наугад берут шар из белого ящика. Если выпадет любое другое количество очков, то наугад берут шар из черного ящика. Какова вероятность появления красного шара?

Решение:

Возможны две гипотезы:

Н1 – при бросании кубика выпадет количество очков, кратное 3, т.е. или 3 или 6;

Н2 – при бросании кубика выпадет другое количество очков, т.е. или 1 или 2 или 4 или 5.

По классическому определению вероятности гипотез равны:

Р(Н1 ) = 2/6 = 1/3; Р(Н2 ) = 4/6 = 2/3.

Поскольку гипотезы составляют полную группу событий, то должно выполняться равенство

Р(Н1 ) + Р(Н2 ) = 1/3 + 2/3 = 1

Пусть событие А состоит в появлении красного шара. Условные вероятности этого события зависят от того, какая именно гипотеза реализовалась, и составляют соответственно:

Р(А|Н1 ) = ; Р(А|Н2 ) = .

Тогда по формуле полной вероятности

Р(А) = Р(Н1 )·Р(А |Н1 ) + Р(Н2 )·Р(А |Н2 ) +…+ Р(Н n )·Р(А |Н n )

вероятность события А будет равна:

Р(А) = = 0,62

Задача 16Б.

Вероятность появления события А по крайней мере один раз в 5-ти независимых испытаниях равна 0,9. Какова вероятность появления события А в одном испытании, если при каждом испытании она одинаковая?

Решение:

Воспользуемся формулой для вероятности появления хотя бы одного события

Р(А) = 1 – q n

По условию задачи Р(А) = 0,9 и n = 5. Составим уравнение

0,9 = 1 – q 5

q 5 = 1 – 0,9 = 0,1

= 0,63 – вероятность Не появления события А в одном испытании, тогда

р = 1 – q = 1 – 0,63 = 0,37 – вероятность появления события А в одном испытании.

Задача 17Б.

Из каждых 40-ка изделий, изготовленных станком-автоматом 4 бракованных. Наугад взяли 400 изделий. Найти вероятность того, что среди них 350 без дефекта.

Решение:

Поскольку количество испытаний велико (n = 400) то для нахождения вероятности того, что событие А появится ровно k = 350 раз воспользуемся локальной теоремой Лапласа:

и j(х ) – диф. функция Лапласа –Гаусса

По условию задачи вероятность бракованного изделия равна q = 4/40 = 0,1, Значит вероятность изделия без дефекта равна р = 1 – q = 1 – 0,1 = 0,9.

Определим аргумент функции Лапласа-Гаусса х : .

Учитывая что функция j(х ) является четной, т.е. j(–х ) = j(х ) по таблице значений функции Гаусса определяем, что j(–1,67) = 0,0989. Теперь » 0,016.

Задача 18Б.

Вероятность присутствия студента на лекции равна 0,8. Найти вероятность того, что из 100 студентов на лекции будут присутствовать не меньше 75 и не больше 90.

Решение:

Поскольку количество испытаний велико (n = 100), то для нахождения вероятности того, что событие А появится от 75 до 90 раз воспользуемся интегральной теоремой Лапласа:

и Ф(х ) – интегральная функция Лапласа

Определим аргументы интегральной функции Лапласа х 1 и х 2 :

= –1,25;

= 2,5.

Учитывая что функция Ф(х ) является Нечетной, т.е. Ф(–х ) = – Ф(х ) по таблице значений интегральной функции Лапласа находим:

Ф(–1,25) = – Ф(1,25) = –0,39435 и Ф(2,5) = 0,49379, тогда

Р100 (75 £k £ 90) = Ф(х2) – Ф(х1) = Ф(2,5) – Ф(–1,25) = 0,49379 +0,39435 = 0,888.

Задача 19Б.

Сколько раз необходимо кинуть игральный кубик, чтобы нивероятнейшее число появления тройки равнялось 55?

Решение:

Число m 0 называется наивероятнейшим в n независимых испытаниях, если вероятность наступления события А при этом числе наибольшая.

n ·p q m 0 n ·p + p

По условию задачи т 0 = 55, вероятность появления тройки равна p = 1/6, значит вероятность НЕ появления тройки равна q = 5/6. Составим неравенство

получили линейную систему неравенств

п – 5 ≤ 330 п ≤ 335

п + 1 ≥ 330 п ≥ 329

Таким образом получили, что игральный кубик необходимо кинуть от 329 до 335 раз.

действие событие величина

Задача 20Б.

Ткач обслуживает 1000 веретен. Вероятность обрыва нитки на одном из веретен в течении одной минуты равна 0,005. Найти вероятность того, что в течении одно минуты обрыв произойдет на 7 веретенах.

Решение:

Поскольку количество испытаний велико (n = 1000), а вероятность отдельного испытания очень мала (р = 0,005) то для вычисления искомой вероятности воспользуемся формулой Пуассона:

Параметр распределения l = 1000 ×0,005 = 5, тогда искомая вероятность равна

Р1000 (7) = = 0,1044.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений08:19:33 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
09:37:57 29 ноября 2015

Работы, похожие на Контрольная работа: Элементы теории вероятностей. Случайные события
Курс лекций по теории вероятностей
Раздел 1. Классическая вероятностная схема 1.1 Основные формулы комбинаторики В данном разделе мы займемся подсчетом числа "шансов". О числе шансов ...
Схемой Бернулли называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода - "успех" и "неудача", при этом "успех" в одном испытании ...
По формуле Бернулли, событие "произошло 0 успехов в n испытаниях" имеет вероятность qn , 1 успех - вероятность n p qn и т.д. Какое же число успехов наиболее вероятно?
Раздел: Рефераты по математике
Тип: реферат Просмотров: 2206 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Разработка программы факультативного курса по теории вероятностей в ...
... ПЦК преподавателей естественно-математических дисциплин Разработка программы факультативного курса по теории вероятностей в курсе математики 8 класса
Аналогично произведением конечного числа событий А1 , А2, ..., Аk называют событие А = А1 А2 . Аk, , состоящее в том, что в результате испытания произошли все указанные события.
P(А1+ А2) = P(А1) + P(А2) = 0,95 + 0,95 - 0,95 - 0,95 = 0,9975 = 1 [4, 28].
Раздел: Рефераты по педагогике
Тип: курсовая работа Просмотров: 9577 Комментариев: 2 Похожие работы
Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать
Теория вероятностей и математическая статистика
ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования "Южный ...
Элементарными исходами, образующими множество W, могут быть объекты любой природы: наборы шаров различных цветов, наборы деталей различного качества, наборы карт различных ...
Повторные независимые испытания - серия одинаковых испытаний, в каждом из которых с постоянными вероятностями p и q может произойти только одно из взаимно противоположных событий A ...
Раздел: Рефераты по математике
Тип: учебное пособие Просмотров: 21964 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Методика обучения элементам теории вероятностей на факультативных ...
Введение Глава I. Вероятностно - статистическая линия в базовом школьном курсе математики 1.1 Статистическое мышление и школьное математическое ...
Тогда число всех исходов испытания m=9, число исходов испытания, благоприятствующих появлению события А, равно 4 (l=4) и P(A)=
Ими будут события Г, Ц, А1= "на серебряной монете выпал герб, на медной монете выпала цифра" и А2 = "на серебряной монете выпала цифра, на медной монете выпал герб".
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 9677 Комментариев: 2 Похожие работы
Оценило: 2 человек Средний балл: 4.5 Оценка: неизвестно     Скачать
Основы теории вероятности
Цель пособия Цель создания данного пособия - на разных задачах, имеющих вероятностный характер, показать наиболее типичные алгоритмы их решения. С тем ...
Очевидно, что событие А представляет собой сумму событий А1, А2, А3, несовместных между собой, поэтому:
биномиальный закон распределения дискретной с.в. X - числа появлений события в n независимых испытаниях, в каждом из которых вероятность появления события равна p. Вероятность ...
Раздел: Рефераты по математике
Тип: учебное пособие Просмотров: 11013 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
... quot;Основы теории вероятностей и математической статистики" в ...
Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования "Вятский государственный ...
Условной вероятностью события А, при условии, что уже произошло событие В, называется отношение вероятностей P(АВ) к Р(А) и обозначается :
Пусть событие В - прибор отказал, событие А1 - оба узла исправны, А2 - первый узел отказал, а второй испарвен, А3 - первый узел исправен, а второй узел отказал, А4 - оба узла ...
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 3368 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Серьёзные лекции по высшей экономической математике
Комбинаторные задачи. 1.Сколькими способами колода в 52 карты может быть роздана 13-ти игрокам так, чтобы каждый игрок получил по одной карте каждой ...
а) Так как здесь рассматриваются независимые события, вероятность попадания в мишень всех трёх стрелков равна произведению вероятностей попадания каждого:
По формуле Бернулли рассчитывается вероятность появления события A "x"раз в n повторных независимых испытаниях, где p - вероятность появления события A в одном испытании, q ...
Раздел: Рефераты по математике
Тип: реферат Просмотров: 8122 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Теория вероятностей и математическая статистика
ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА ЧАСТЬ I. ТЕОРИЯ ВЕРОЯТНОСТЕЙ 1. Случайные и достоверные события. Алгебра событий. Классическое и ...
Найти вероятность: а) выхода стандартной детали, считая появление брака во время отдельных операций независимыми событиями; б) выхода бракованной детали.
Решение: а) введем события А={на выходе появилась стандартная деталь}, Аi={i-я операция обработки прошла без брака}, i=1,2,3. Тогда А=А1=А2=А3.
Раздел: Рефераты по математике
Тип: учебное пособие Просмотров: 3913 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Построение систем распознавания образов
МИНИСТЕРСТВО ОБРАЗОВАНИЯ УКРАИНЫ ДОНЕЦКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА О С Н О В Ы П О С Т Р О Е Н И Я С И С Т Е М Р А С П О З Н ...
В результате может оказаться, что классов 3 (А1- бомбардировщики, А2 - штурмовики ,А3 - истребители), а средств противодействия - 2 (S1 - ЗУР, S2 - истребители с их вооружением).
Известно, что если вероятность попадания в "десятку" при одном выстреле равна p , то искомая вероятность согласно биномиальному закону распределения вероятностей вычисляется так:
Раздел: Рефераты по психологии
Тип: реферат Просмотров: 3837 Комментариев: 3 Похожие работы
Оценило: 2 человек Средний балл: 4.5 Оценка: неизвестно     Скачать

Все работы, похожие на Контрольная работа: Элементы теории вероятностей. Случайные события (6564)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(149897)
Комментарии (1829)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru