Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Курсовая работа: Линейные электрические цепи постоянного и синусоидального тока

Название: Линейные электрические цепи постоянного и синусоидального тока
Раздел: Рефераты по физике
Тип: курсовая работа Добавлен 06:26:46 28 января 2011 Похожие работы
Просмотров: 1756 Комментариев: 3 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Курсовая работа

«Линейные электрические цепи постоянного и синусоидального тока»


Задания

Цель работы: Расчёт и исследование цепей постоянного и синусоидального тока.
Определить:
1) токи всех ветвей схемы, используя МКТ, МУП.
2) ток в выделенной ветви, используя МЭГi, МЭГu.
3) проверить баланс мощностей
4) привести схемы в EWB или Ms для измерения токов ветвей, напряжений на элементах.

Задание 1

Дано:

R1 = 3 Ом, R2 = 10 Ом, R4 = 10 Ом, R5 = 5 Ом, R7 = 2 Ом,

J2 = 1A, E5 = 20B, E6 = 5B.

Задание 2

Дано:

R2 = 5 Ом, R3 = 10 Ом, R4 = 5 Ом, R5 = 5 Ом, R6 = 5 Ом, R7 = 5 Ом,

J4 = 1 A, E1 = 10 B, E6 = 25 B.

Задача 3


Дано:

R1 = 6 Ом, R2 = 3 Ом, R4 = 10 Ом, R5 = 1 Ом, R6 = 3 Ом, R7 = 3 Ом, R8 = 6 Ом,

J2 = 1 A, E3 = 12 B, E4 = 24 B.

Задание 4

Дано:

R1 = 220 Ом, R2 = 120 Ом, R3 = 150 Ом, R4 = 200 Ом, E1 = 10B, E3 = 15B,

f = 120МГц, C1 = 253 мкФ, C2 = 345 мкФ, L1 = 276 мГн, L2 = 138 мГн.


Линейные электрические цепи постоянного тока

Теория, метод контурных токов

Нам дана линейная электрическая цепь. Задача, заключается в нахождении сначала контурных токов, затем и токов в ветвях. Сначала выбираем произвольно направления токов в контурах, его можно выбрать по часовой стрелке и против часовой стрелки, но это условно, так как исходя из полученного в дальнейшем знака, мы будем судить о направлении тока. Воспользуемся фундаментальными законами Кирхгофа. В частности первый закон Кирхгофа: алгебраическая сумма токов, подтекающих к любому узлу схемы, равна 0. Применив закон к примеру (рис. 1) получаем систему уравнений:

.

Выбираем дерево, которое включает в себя максимальное количество ветвей без источников тока. Пусть это будут ветви, содержащие . Затем выбираем контура, и выбираем обход контура. Воспользуемся вторым законом Кирхгофа: алгебраическая сумма падений напряжений в любом замкнутом контуре равна алгебраической сумме ЭДС вдоль того же контура. Для выбранных нами контуров составляем систему уравнений Кирхгофа:


Возьмем токи из первого закона Кирхгофа и подставим их в уравнения из второго закона Кирхгофа. Получим:

Поясним данную систему. Через каждый элемент протекает некоторый контурный ток : . Значит падение напряжения на элементе обусловлено протеканием через него всех контурных токов, причем напряжение от собственного контурного тока всегда берется со знаком плюс. Падения напряжений от остальных контурных токов берутся со знаком плюс, если направления контурных токов совпадает с направлением рассматриваемого тока, и в обратном случае с минусом.

Затем записываем матрицу сопротивлений симметричную относительно главной диагонали. В правой части мы записываем сумму ЭДС входящих в контур если направление ЭДС совпадает с направлением обхода контура, то она со знаком «+», в противном случае – со знаком минус. При переходе от токов ветвей к контурным токам первый закон Кирхгофа выполняется всегда.

Определяем количество уравнений МКТ, по формуле:

(где N-число (узлов, ветвей, уравнений))

Если в цепи присутствуют независимые источники тока, то число уравнений уменьшается на количество источников токов:

. (где Nj– число источников тока)


Записываем уравнения МКТ в общем виде:

,

Получаем матричное уравнение по МКТ.

Запишем алгоритм записи уравнений по МКТ:

1) чертится граф;

2) выбирается дерево;

3) выбираются независимые контуры путем добавления хорд к ветвям дерева;

4) выбираются направления контуров;

5) записываются уравнения по методу контурных токов числом, указанным выше;

6) определяются контурные токи (решается система уравнений);

7) определяются токи во всех ветвях; обратим внимание на то, что через каждую хорду будет протекать только контурный ток:

но .

Получим систему уравнений МКТ формально. Воспользуемся стандартной ветвью.

Вспоминаем, что токи ветвей связаны с токами хорд следующим соотношением: , откуда становится ясно, что наши контурные токи – это и есть . Далее,

Система была неполная, но мы сменили базис и перешли к полной системе.

Отсюда можно определить:

Уравнение и есть формальное уравнение записи по МКТ. Здесь действительно учтены как независимые источники ЭДС, так и независимые источники тока. Количество уравнение получается автоматически. Также из уравнения становится ясно, что формальная запись и выглядит следующим образом:

.

Задание 1

Принципиальная схема цепи выглядит следующим образом:

Найдем количество уравнений. Так как в цепи присутствуют независимые источники тока, то мы имеем:

Теперь выберем независимые контуры. Пусть первый контур состоит из ветвей 1, 4, 5, и по нему течет ток I11 по часовой стрелке. Пусть второй контур состоит из ветвей 2, 4, 6, по нему течет ток I22 по часовой стрелке.

Запишем систему уравнений по методу контурных токов:


(R3+R4)*I11-R4*I22=-E6

(R1+R7+R4+R5)*I22-I11*R4 – J1*R5=E5

15 * I11 – 5 * I22 = -5,

-5 * I11 + 15 * I22 = 15;


Решим систему по методу Крамера. Найдем определители:

D = = 200, D22 = = 200, D11 = = 0.

Найдем контурные токи:

I11 = D11/D = 0 A; I22 = D22/D = 1 A

Теперь посчитаем токи во всех ветвях.

Через хорды текут только контурные токи, поэтому:

I3 = I22 = 0 A

I1 = I11 = 1 A

В ветви с источником тока течет ток, создаваемый этим источником:

I2 = J1 = 1A

Токи в остальных ветвях найдем как сумму контурных токов, текущих по ним, с учетом знаков:

I4 = I22 – I11 = 1 A

I6 = J1-I11 = -1 A

I5 = I22 + J1 = 2 A

Проверка

1) Баллансмощностей:

E5*I5 + E6*I6 +J2*(U2+I2*R2) = I1^2*R1+I2^2*R2+I3^2*R3+I4^2*R4+I5^2*R5+I1^2*R7

40 Вт = 40 Вт.

2) Проверка по первому закону Киргофа:

I1 = I5 + I3;

I1 = I2 + I4;

I4 = I5 + I6;

I2 + I6 = I3;

Задание 2

Принципиальная схема цепи выглядит следующим образом:

Найдем количество уравнений. Так как в цепи присутствуют независимые источники тока, то мы имеем:

Теперь выберем независимые контуры. Пусть первый контур состоит из ветвей 1 и 2, и по нему течет ток I11 против часовой стрелки. Пусть второй контур состоит из ветвей 1 и 3, по нему течет ток I22 против часовой стрелки.

Запишем систему уравнений по методу контурных токов, учитывая J1:

(R3 + R6 +R5) * I11 – (R5 + R6) * I22 = – (R3 + R6) * J1 – E6 + E1

– (R5 + R6) * I11 + (R2 + R5 + R6 + R7) * I22 = R6 * J1 + E6

20 * I11 – 10 * I22 = -30

-10 * I11 + 20 * I22 = 30


Решим систему по методу Крамера. Найдем определители:

D = = 300, D11 = = -300, D22 = = 300.

Найдем контурные токи:

I11 = D11/D = -1 A; I22 = D22/D = 1 A

Токи в ветвях найдем как сумму контурных токов, текущих по ним, с учетом знаков:

I2 = I7 = I22 = 1A

I6 = – I11 + I22 – J1 = 1A

I5 = I11 – I22 = -2 A

I4 = J1 = 1A

I3 = I11 + J1 = 0

I1 = I11 = -1A

Проверка

1) Баллансмощностей:

I3*I3*R3 + I4*I4*R4 + I5*I5*R5 + I6*I6*R6 + I2*I2*(R2+R7) = E6*I6 + E1*I1 + J4 * U4,

5 + 5 + 20 + 10 = 25 – 10 + 25,

40 = 40


2) Проверка по первому закону Киргофа:

I4 + I1 = I3;

I6 + I3 = I2;

I4 + I5 + I6 = 0;

I1 = I2 + I5;

Задание 3

Принципиальная схема цепи выглядит следующим образом:

2

Преобразуем данную схему. Ветвь 1 исключим. Позже ток в этих ветвях найдем через закон Киргофа. Далее, найдем сопротивление, эквивалентное сопротивлению между узлами 1 и 2 (участок схемы с ветвями 1, 5, 7, 8).

Rэ = 1/(1/R5 + 1/R4) = 8/3 (Ом)

И заменим этот участок на одну ветвь с сопротивлением, равным Rэ. Получим следующую схему:

Найдем количество уравнений. Так как в цепи присутствуют независимые источники тока, то мы имеем:

Начертим граф. Пусть ветвь 1 составляет дерево.

2

I22

3

Теперь выберем независимые контуры. Пусть первый контур состоит из ветвей 1, 4, 5, и по нему течет ток I11 по часовой стрелке. Пусть второй контур состоит из ветвей 2, 4, 6, по нему течет ток I22 по часовой стрелке.

Запишем систему уравнений по методу контурных токов:


I11*(R7+R3) – I22*R3 = E6 – E3

– I11*R3 + I22*(R2 + R3 + R4) = E3 + J1*R2

12*I11 – 4*I22=0,

32/3*I22 – 4*I11= 28;


Решим систему по методу Крамера. Найдем определители:

D = = 112, D22 = = 336, D11 = = 112.

Найдем контурные токи:

I11 = D11/D = 1 A; I22 = D22/D = 3 A

Теперь посчитаем токи во всех ветвях.

I1= J1 = 1 A

I2= I22 – J1= 2 A

I3 = I22 – I11 = 2 A

I4 = – I22= -3 A

I6 = I11 – J1 = 0 A

I7 = I11 = 1 A

· Теория, метод узловых потенциалов

Возьмём для примера ПЭС изображённую на рисунке 2.В изображённой цепи есть 3 узла. Так как любая(одна) точка схемы может быть заземлена без изменения токораспределения в ней, один из узлов схемы можно заземлить, то есть принять потенциал равным 0. Заземлим узел с потенциалом . По первому закону Кирхгофа для двух оставшихся узлов запишем систему уравнений:


Затем воспользуемся обобщённым законом Ома для участка цепи, содержащего источник ЭДС, позволяет найти ток этого участка по известной разности потенциалов на концах участка цепи и имеющейся на этом участке ЭДС E. По обобщенному закону Ома, запишем систему:

Подставим в и сгруппируем слагаемые с одинаковыми потенциалами:

– это и есть уравнения по МУП .

Уравнения имеют следующую структуру. Потенциал узла умножается на его собственную проводимость – сумма проводимостей всех ветвей, сходящихся к узлу. Из этого произведения вычтем потенциалы узлов, имеющие с рассматриваемым общие ветви, умножаем на взаимную проводимость этих узлов (сумму проводимостей всех ветвей, которые находятся между этими двумя узлами). Потенциал узла, потенциал который мы приняли равным нулю, в уравнения не входит. Матрица в общем случае будет симметрична, на главной диагонали будут стоять собственные проводимости узлов; эти элементы матрицы всегда будут иметь знак «плюс». Недиагональные элементы всегда будут иметь знак «минус». В правой части уравнений – записывается алгебраическая сумма произведений источников ЭДС на проводимости соответствующих ветвей, причем это произведение берется со знаком «+», если ЭДС направлена к узлу, и со знаком «–», если от узла.

Теперь рассмотрим случай, когда в цепи будут присутствовать источники тока (рис 3). Проводимость первой ветви в этом случае будет равняться нулю, и первое уравнение будет выглядеть следующим образом:

,

источник тока вписываем в правую часть со знаком «плюс», если он направлен к узлу и со знаком «минус» в противоположном случае. Количество уравнений не уменьшается, так как уравнения по

МУП не зависят от изначально выбранных направлений токов в ветвях. Количество уравнений по МУП рассчитываются по формуле:

.

Докажем правильность расстановки знаков, обратившись к стандартной ветви (рис 4). Рассмотрим схему, содержащую узлов, и рассмотрим стандартную ветвь, сначала без источника тока.

Здесь:

.

Значит


Для любого узла выполняется первый закон Кирхгофа (выбрасываем только собственный узел).

.

Учитываем, что узел к узлу никакого отношения не имеет, его можно вынести за скобку:

.

Отсюда

,

сумма проводимостей всех ветвей, сходящихся к узлу, умноженная на потенциал собственного узла, взятая со знаком «плюс», минус сумма произведений проводимостей между i -м и j -м узлом и потенциалов соответствующих узлов равна взятой со знаком «минус» сумме произведений источников на проводимости.

Рисунок 5
Мы доказали все знаки на частном примере.

Теперь включим источник тока (рис 5). В данном случае он будет вытекающим. С учетом его наличия, уравнение по первому закону Кирхгофа будет выглядеть следующим образом:

.

Полученный результат также соответствует результату, полученному ранее для частного примера.

Если мы теперь посмотрим на уравнение

,

где в могут входить как источники тока, так и источники ЭДС, умноженные на проводимость, – собственные проводимости, берутся со знаком «+», – взаимные проводимости, берутся со знаком «–».

Получим эту же систему уравнений в стандартном виде, т.е. через стандартную ветвь. Для стандартной ветви:

.

Опираясь на закон Ома и записанные выше уравнения, получим:

.


Вспомним про редуцированную матрицу инциденций, умножим правую и левую часть на :

Сравниваем число уравнений и число неизвестных. Матрица дает нам N -1 уравнений, а число неизвестных – это число ветвей графа. Вспоминаем, что

Подставляем это в полученное ранее выражение:

Свели уравнение к полному. Получаем относительно :

Теперь можем найти все необходимое:

,

Замечание: Матрица не требует составления дерева, поэтому вычислительный алгоритм для машин будет относительно простым.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений08:01:00 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
09:22:27 29 ноября 2015
в
гога13:11:58 02 июня 2012

Работы, похожие на Курсовая работа: Линейные электрические цепи постоянного и синусоидального тока
Синхронные машины. Машины постоянного тока
Синхронные машины. Машины постоянного тока Учебное пособие 1. Синхронные машины 1.1 Принцип действия синхронной машины Статор 1 синхронной машины (рис ...
Если к щеткам подключить сопротивление нагрузки rн то через обмотку якоря будет проходить постоянный ток Iа, направление которого определяется направлением э.д.с. Е. В обмотке ...
Оно является нелинейным дифференциальным уравнением с переменными коэффициентами, так как э.д.с. ер пропорциональна di/dt; э.д.с. ек является функцией Вк, сопротивления rх- и r2 ...
Раздел: Рефераты по физике
Тип: учебное пособие Просмотров: 52513 Комментариев: 2 Похожие работы
Оценило: 3 человек Средний балл: 5 Оценка: неизвестно     Скачать
Компенсация реактивной мощности в системах электроснабжения с ...
СОДЕРЖАНИЕ Введение 1. Исследование методов и устройств компенсации реактивной мощности при электроснабжении нелинейных и резкопеременных нагрузок 1.1 ...
Емкость конденсатора С, подключенного параллельно нагрузке, содержащей R и L, подбирают такой, чтобы ток IC, проходящий через конденсатор, был по возможности близок по абсолютной ...
При контурном заземлении заземлители располагаются по контуру вокруг заземленного оборудования на небольшом (несколько метров) расстоянии друг от друга.
Раздел: Рефераты по физике
Тип: дипломная работа Просмотров: 44816 Комментариев: 5 Похожие работы
Оценило: 9 человек Средний балл: 4.8 Оценка: 5     Скачать
Модернизация релейной защиты на тяговой подстанции Улан-Удэ на базе ...
Иркутский Государственный Университет Путей Сообщения Пояснительная записка к дипломному проекту ДП.ЭЖТ.190401.ПЗ Модернизация релейной защиты на ...
-источники тока - диапазон 20 А, нагрузка 0,625 Ом, коэффициенты для всех каналов выставляются на середине шкалы при токе 10 А;
При замыкании токоведущих частей электроустановки на корпус, соединенный с таким контурным заземлителем, участки земли внутри контура приобретают высокий потенциал, близкий к ...
Раздел: Рефераты по транспорту
Тип: дипломная работа Просмотров: 8577 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Расчет разветвленной электрической цепи постоянного тока
Министерство науки и образования Республики Казахстан Технико-экономическая академия кино и телевидения Кафедра инженерных дисциплин КУРСОВАЯ РАБОТА ...
Записываем уравнения по второму закону Кирхгофа относительно контурных токов, для выбранных независимых контуров:
I22(R2+R3+R4)-I11*R3-I33*R4=0
Раздел: Рефераты по физике
Тип: реферат Просмотров: 21968 Комментариев: 7 Похожие работы
Оценило: 3 человек Средний балл: 3 Оценка: неизвестно     Скачать
Модернизация электроснабжения системы электропривода подъемной ...
Министерство общего и профессионального образования Российской Федерации Кафедра автоматизации технологических процессов и производств УТВЕРЖДАЮ: Зав ...
Талнахский рудоносный интрузив в поле рудника разделен на северо-западную и северо-восточную ветви субмеридиональным Норильско-Хараеллахским разломом.
В системе регулирования скорости соподчиненным является контур регулирования тока якорной цепи.
Раздел: Рефераты по физике
Тип: дипломная работа Просмотров: 2840 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Лекции - преподаватель Григорьев Владимир Калистратович
ЛЕКЦИЯ 1 Исторический обзор Что такое электроника? Это передача, приём, обработка и хранение информации с помощью электрических зарядов. Это наука ...
И здесь также, как и в предыдущем случае, возникает вопрос, почему характеристики не прямые - кажется, что только от напряжения Uзп зависит проводимость канала, и, следовательно ...
Здесь Свх и Свых - обычные разделительные конденсаторы, R1 и R2 - резисторы базовой цепи, Rэ и Сэ - элементы обратной связи по постоянному току (для термостабилизации) и Lконт и ...
Раздел: Рефераты по схемотехнике
Тип: реферат Просмотров: 1083 Комментариев: 2 Похожие работы
Оценило: 3 человек Средний балл: 3.3 Оценка: неизвестно     Скачать
Цепи постоянного тока
Цепи постоянного тока СОДЕРЖАНИЕ 1 Электрическая цепь и её элементы 2 Схема замещения электрической цепи 3 Параметры и характеристики элементов ...
Nk= Nb- (Ny-1).В этом методе, уравнения по второму закону Кирхгофа составляются относительно контурных токов, равных по величине токам во внешних ветвях каждого контура.
- Задаются(дугами) положительные направления контурного тока в каждом из независимых контуров, обозначив эти токи буквами с двойными индексами I11,I22.
Раздел: Рефераты по физике
Тип: реферат Просмотров: 6432 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Разработка ветроэнергетической установки
РЕФЕРАТ 96 с., 42 рис., 3 табл., 1 приложение, 23 источников. Объект исследования - силовой полупроводниковый преобразователь в составе ...
При больших значениях момента нагрузки на валу двигателя, т. е. при больших средних значениях I выпрямленного тока, электромагнитной энергии, запасенной в индуктивности Lя при ...
Сопротивление заземляющего устройства, к которому присоединены нейтрали трансформаторов либо выводы источников однофазного тока, в любое время годе должно быть не более 4 Ом ...
Раздел: Рефераты по физике
Тип: дипломная работа Просмотров: 5154 Комментариев: 2 Похожие работы
Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать
Тиристорные устройства для питания автоматических телефонных станций
Содержание Задание к дипломному проекту 2 Введение 6 1 Электропитающие устройства АТС 9 1.1. Электрические машины постоянного тока 9 1.2 ...
Как выше отмечалось, для преобразования переменного тока в постоянный необходим прибор с односторонней (вентильной) электрической проводимостью.
Выбираем ограничительные резисторы R1 = R2 = 11 Ом типа МЛТ-0,125:
Раздел: Рефераты по радиоэлектронике
Тип: реферат Просмотров: 3199 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Все работы, похожие на Курсовая работа: Линейные электрические цепи постоянного и синусоидального тока (375)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151400)
Комментарии (1844)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru