Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Статья: Колебания продольные… и рождение неопределённости

Название: Колебания продольные… и рождение неопределённости
Раздел: Рефераты по физике
Тип: статья Добавлен 23:42:43 02 января 2011 Похожие работы
Просмотров: 137 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Обращаясь к основным дифференциальным уравнениям колебаний, мы заметим, что когда умножим их на – = к2 , они будут содержать члены, из которых одни имеют коэффициентом квадрат скорости и поперечных колебаний, другие – квадрат скорости продольных колебаний.

Первые члены в случае колебаний продольных должны исчезнуть из уравнений, и мы получаем первую группу:

Так как поверхность p по нашему выбору есть поверхность волны, то в уравнениях § 7 мы должны удержать одно колебание R и приравнять нулю колебания /?! и R.2 , совершающиеся в плоскости, касательной к волне. Вследствие этого находим, полагая // =1:

Так как А = 0, то уравнения (1) примут вид:

Умножая первое из уравнений (2) на //i //2 , дифференцируя по p и обращая внимание на уравнение (4), находим:

что по уравнениям (2) В не зависит ни от рх , ни от [–]. Следовательно, означая через &F частную производную от функции F по одной из переменных ^, р.2 , мы получаем из уравнения (7):

Подставляя в это выражение величины Н1 Н2 , найденные в п.п. 3, приравнивая нулю коэффициенты при различных степенях, мы находим следующие условия, которым должна удовлетворять волновая Ф – я

Известно, что подобные соотношения имеют место только для сферы, круглого цилиндра и плоскости.

Отсюда имеем, что изотермические волновые поверхности могут распространять колебания продольные.

Итак, если поверхность сотрясения или начальная волна не принадлежат к поверхностям изотермических волн, то вблизи их колебания происходят смешанные , но на значительных расстояниях волна приближается к виду одной из изотермических волн, и в явлении обнаруживаются колебания продольные. СТОП!!!

Остается проинтегрировать приведенные дифференциальные уравнения для сферы, с использованием гармонических функций!!!

Эксперименты Теслы гармонический осциллятор – недопустим!!!

Для сферы в координатах, уже нами употреблённых, мы имеем:

Дальнейшие преобразования несущественны и не приводятся, так как приводят к исходному уравнению , не имеющему физического смысла для солитоноподобных волн.

Найденные выводы одинаково применимы к явлениям света в телах однородных и притом в тех пределах приближения, которые имеют место в теории Буссинеска!?

Отсюда: «болевой момент» выявлен.

Н. Умов математический сборник, т. 5, 1870 г. [7].

Ещё одна «страшная» неопределённость

Рассуждая аналогично, можно было бы легко получить подобное же выражение и для магнитной энергии, а следовательно и для токов. Мы видим, что, даже настаивая на самой простой из формул, проблему локализации энергии по-прежнему не удаётся решить .

И то же самое имеем для потока энергии. Можно преобразовать движение текущей энергии произвольным образом, добавляя к вектору Пойнтинга другой вектор (u, v, w), обязанный удовлетворять лишь уравнению несжимаемых жидкостей

Откуда:

Теорема Пойнтинга , являющаяся следствием общих уравнений, ничего к ним не добавляет.

Поэтому локализация энергии логически бесполезна (а иногда, вредна).

Но имеется аспект, в котором важно рассмотреть теорему Пойнтинга.

Основным фактом, из которого проистекает закон сохранения энергии, был и остаётся экспериментально найденный факт невозможности вечного движения , факт – независимо от наших идей, и может, быть отнесён к порциям энергии, которой должен обладать эфир в отсутствие материальных тел.

Закон сохранения энергии [4], в его классической форме W = Const , объясняет эту невозможность.

Теорема Пойнтинга , требующая возможности преобразования объёмного интеграла (отчасти произвольного) в поверхностный, выражает гораздо меньше. Она легко допускает создание вечного движения, не будучи способна показать его невозможность !

По сути, пока мы не введём гипотезу запаздывающих потенциалов , непрерывное выделение энергии сходящихся волн, приходящих из бесконечности, остаётся столь же вероятным, сколь и потеря энергии, наблюдаемая в действительности.

Если бы двигатель мог вечно забирать одну лишь энергию эфира, независимо от присутствия материальных тел, то могло бы существовать и вечное движение . Таким образом, становится ясно, что прежде чем принять формулу запаздывающих потенциалов, мы должны доказать, что ускоренная частица теряет энергию и в результате подвергается противодействию, пропорциональному производной ее ускорения [13].

Достаточно лишь изменить знак c , чтобы прийти к гипотезе сходящихся волн.

Тогда мы обнаружим , что знак вектора излучения также изменится, и новая гипотеза приведёт, скажем, в случае вибрирующей частицы, к постепенному увеличению амплитуды с течением времени, а в целом – к увеличению энергии системы?!

В Природе солитоны бывают:

– на поверхности жидкости первые солитоны, обнаруженные в природе, иногда считают таковыми волны цунами

– различные виды гидроудара

– звуковые ударные – преодоление «сверхзвука»

– ионозвуковые и магнитозвуковые солитоны в плазме

– солитоны в виде коротких световых импульсов в активной среде лазера

– предположительно, примером солитона является Гигантский гексагон на Сатурне

– можно рассматривать в виде солитонов нервные импульсы [32], [49].

Математическая модель, уравнение Кортевега-де Фриза.

Одной из простейших и наиболее известных моделей, допускающих существование солитонов в решении, является уравнение Кортевега-де Фриза:

ut + uux + βuxxx = 0.


Одним из возможных решений данного уравнения является уединённый солитон :

но и здесь осцилятором является гармоническая функция

Кубическое уравнение Шрёдингера

Для нелинейного уравнения Шрёдингера:

при значении параметра ν > 0 допустимы уединённые волны в виде:

где r , s ,α, U – некоторые постоянные.

Теоремы неопределённости в гармоническом анализе

Гармонический осциллятор в квантовой механике – описывается уравнением Шредингера [38], [79]

(217.5)

Уравнение (217.5) называется уравнением Шредингера для стационарных состояний.

Стационарные состояния квантового осциллятора определяются уравнением Шредингера вида


(222.2)

где Е – полная энергия осциллятора.

В теории дифференциальных уравнений доказывается, что уравнение (222.2) решается только при собственных значениях энергии

(222.3)

Формула (222.3) показывает, что энергия квантового осциллятора квантуется.

Энергия ограничена снизу отличным от нуля, как и для прямоугольной «ямы» с бесконечно высокими «стенками» (сМ. § 220), минимальным значением энергии

E 0 = 1/2 w 0 . Существование минимальной энергии – называется энергией нулевых колебаний – является типичной для квантовых систем и представляет собой прямое следствие соотношения неопределенностей.

В гармоническом анализе принцип неопределённости подразумевает, что нельзя точно получить значения функции и её отображения Фурье – а значит и сделать точный расчёт .

То есть моделирование, генерация и аналогия с соблюдением принципов подобия процессов и форм в Природе, с применением гармонического осциляторане возможна.

Разных видов математических солитонов известно пока мало и все они не подходят для описания объектов в трехмерном пространстве, тем более процессов происходящих в Природе.

Например , обычные солитоны , которые встречаются в уравнении Кортевега–де Фриза, локализованы всего лишь в одном измерении, если его «запустить» в трехмерном мире, то он будет иметь вид летящей вперед бесконечной плоской мембраны, мягко говоря абракадабра!!!

В природе, такие бесконечные мембраны не наблюдаются, а значит, исходное уравнение для описания трехмерных объектов не годится.

Вот здесь и заключается ошибочность введения гармонических функций – осцилляторов, связи в случае смешанных колебаний. Связной закон подобия [54], [54], но это уже другая история, которая выведет, теорию солитонов из систематической неопределённости [38], [39].

Считаю, что не всё так плохо – имеется целый огромный пласт «неизученной» теории и методов Н. Тесла, на означенную тему, тем более, что математический аппарат давно подготовлен к изучению и решению проблем визуализации ударных волн.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:47:15 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
08:45:27 29 ноября 2015

Работы, похожие на Статья: Колебания продольные… и рождение неопределённости

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151454)
Комментарии (1844)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru