Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Холодильное оборудование

Название: Холодильное оборудование
Раздел: Промышленность, производство
Тип: контрольная работа Добавлен 13:30:09 05 ноября 2010 Похожие работы
Просмотров: 1165 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Назначение и работа испарителя

В состав любой парокомпрессионной холодильной машины входят как минимум, два теплообменных аппарата, обеспечивающих обмен энергией в виде теплоты между хладагентом и внешней средой. Этими обязательными теплообменными аппаратами являются испаритель и конденсатор холодильной машины. Кроме них в состав холодильной машины может быть включен регенеративный теплообменник, обеспечивающий обмен теплотой между потоками хладагента и повышающий эффективность и надежность работы холодильной машины.

Испаритель – это теплообменный аппарат, устанавливаемый в охлаждаемом помещении, камере или отсеке холодильного оборудования и обеспечивающий охлаждение газообразной или жидкой среды. Во внутреннем объеме испарителя при низкой температуре кипит хладагент, воспринимая теплоту охлаждаемой среды.

По виду охлаждаемой среды различают испарители для охлаждения жидких теплоносителей и для охлаждения воздуха.

Испарители для охлаждения жидких теплоносителей используются при охлаждении напитков (сокоохладители, охладители пива, кваса, газированной воды) или промежуточных теплоносителей, в качестве которых применяются вода, водные растворы солей, этиленгликоль или пропиленгликоль.

В качестве промежуточных теплоносителей при отрицательных температурах широко используются водные растворы солей NaCl и CaCl2 . Эти растворы, получившие название «рассолы» имеют минимальную (эвтектическую) температуру: -21,20 С для NaCl, -550 С для CaCl2.

По конструкции различают панельные испарители открытого типа, кожухоотрубные испарители, кожухозмеевиковые листорубные и ребристорубные испарители.

Испарители для охлаждения воздуха получили наибольшее распространение, так как они применяются практически во всех видах холодильного оборудования. Эти испарители устанавливаются в холодильных камерах. Различают испарители с естественной циркуляцией воздуха и воздухоохладители (с принудительным движением воздуха, создаваемым вентилятором).

Кипение хладагента в испарителе происходит при передаче теплоты от охлаждаемой среды через твердую герметическую разделяющую стенку, называемую теплопередающей поверхностью испарителей. Ее изготавливают из теплопроводных материалов, например, из медных труб. Для интенсификации теплообмена поверхность труб испарителей, соприкасающуюся с охлаждаемым воздухом, оребряют. Оребрение поверхности проводят чаще всего нанизыванием на трубы тонкостенных металлических пластин с определенным расстоянием между ними.

Наиболее простую конструкцию имеют панельные испарители открытого типа . Испаритель состоит из бака прямоугольного сечения, заполненного теплоносителем, внутрь которого помещаются панели испарителя. Испарители данного типа используются в крупных аммиачных холодильных машинах.

При использовании панельных испарителей для охлаждения воды возможно расширение функциональных возможностей аппаратов. Расстояние между панелями увеличивают, и при охлаждении воды добиваются образования слоя льда на наружной поверхности панелей. Слой льда выполняет функции аккумулятора теплоты. Такие испарители-аккумуляторы находят применение в технологических циклах с неравномерной тепловой нагрузкой, например, на предприятиях молочной промышленности, пиво-алкогольного производства и др.

Недостатком панельных испарителей открытого типа является существенная коррекция панелей и баков, т.е. элементов, смачиваемых теплоносителем и имеющих контакт с окружающим воздухом.

Более высокими эксплуатационными характеристиками обладает замкнутая система циркуляции теплоносителя. В этой системе охлаждение теплоносителя обеспечивается в кожухоотрубном испарителе . Испаритель представляет собой цилиндрический кожух, внутри которого проходит трубной пучок. Наружная поверхность труб представляет собой теплопередающую поверхность, через которую теплота от теплоносителя, протекающего внутри труб, передается кипящему в межтрубном пространстве хладагенту. Торцы труб герметично закреплены в двух трубных решетках, приваренных к кожуху. Трубные решетки закрыты крышками, причем в крышке предусмотрены патрубки для подвода и отвода теплоносителя (воды, рассола).

Жидкий хладагент (аммиак) через вентиль подается в межтрубное пространство испарителя. Поплавковый регулятор поддерживает уровень хладагента на высоте примерно 0,8 диаметра кожуха. Парообразный хладагент отводится из испарителя через отделитель жидкости (сухопарник), размещенный в верхней части аппарата установлен маслосборник, через который из испарителя периодически сливают собранное смазочное масло и загрязнения.

В малых холодильных машинах чаще используют модифицированные кожухотрубные испарители, получившие название – кожухозмеевиковые испарители . Испарители данного типа имеют только одну трубную решетку, к которой присоединены U-образные трубы. Хладагент кипит внутри труб, а охлажденные теплоноситель прокачивается по межтрубному пространству. Для интенсификации теплообмена при кипении хладагента внутри трубы устанавливается специальная вставка, выполняющая функции внутреннего оребрения.

Организация кипения хладагента внутри труб позволяет существенно (примерно в 2–3 раза) снизить количество хладагента в контуре холодильной машины. Кроме того, исключена возможность замерзания теплоносителя внутри труб и их разрыва.

Для небольших холодильных камер чаще всего используются испарители непосредственного охлаждения. В них теплота охлаждаемого воздуха (без промежуточного теплоносителя) непосредственно передается кипящему хладагенту.

В современном холодильном оборудовании (низкотемпературные секции) часто изготавливают панельные испарители в виде листотрубной конструкции. Данные испарители состоят из двух тонкостенных листов, на которых изготовлены половины профилей каналов хладагента. После соединения листов они подвергаются горячей прокатке и в месте контакта поверхностей свариваются. Половины профилей листов, совмещаясь, образуют сеть каналов для хладагента. Для присоединения испарителя к подводящему и отходящему трубопроводам предусмотрены штуцеры. В качестве материала испарителей может использоваться тонкостенный лист нержавеющей стали.

Разновидностью панельных испарителей являются панельные испарители. Они состоят из панели требуемой формы, к которой пайкой крепится медная труба испарителя. Панель может иметь различную форму (короб, лоток и пр.), соответствующую конфигурации охлаждаемого объема оборудования.

Листотрубные панельные испарители применяют в бытовых холодильниках.

У ребристотрубных испарителей теплообменная поверхность испарителя образована из гладких медных труб, на которые насажены штампованные пластинчатые ребра. Испарители данного типа наиболее часто используют для охлаждения холодильных камер. Их размещают в охлаждаемых помещениях на стенах, поэтому эти испарители получили название «настенные».

Примером ребристого испарителя являются испарители типа ИРСН (испаритель ребристый сухой настенный). Испарительная батарея ИРСН изготовлена из медных труб, внутри которых кипит хладагент, чаще всего R12 или R22.

Трубы диаметром 18*2 расположены в два ряда, на наружной поверхности труб размещены стальные или латунные штампованные ребра. Трубы испарителя последовательно соединяются друг с другом полукруглыми трубками, получившими название «калачи». Для подсоединения испарителя к линии подвода жидкого хладагента и отвода парообразного предусмотрены штуцеры. Для крепления испарителя к стене предусмотрены два кронштейна, расположенные по боковым сторонам на задней части испарителя.

В обозначении испарителя, например ИРСН – 12,5, присутствует цифра, показывающая величину теплообменной поверхности в квадратных метрах. Испарители ИРСН выпускаются с разной величиной поверхности теплообмена от 4,7 до 18 м2 .

Испаритель с принудительным движением воздуха через оребренную теплообменную поверхность называется воздухоохладителем. Движение воздуха осуществляется вентилятором с приводом от электродвигателя. Воздухоохладители более компактны и легче, чем испарители с естественной циркуляцией воздуха.

Воздухоохладители находят применение в торговом холодильном оборудовании, хорлодильных камерах, в оборудовании для охлаждения и замораживания пищевых продуктов.

Воздухоохладитель помещен в корпус, в нижней части которого предусмотрен поддон для сбора талой воды при оттаивании. Вентилятор, состоящий из крыльчатки и электродвигалеля, устанавливается в специальном кожухе, который крепится к корпусу воздухоохладителя. Заполнение воздухоохладителя хладагентом осуществляется через терморегулирующий вентель, выполняющий функции дросселирующего устройства и автоматического регулятора. Оребренная теплообменная поверхность.

Аммиак. Свойства, применение, недостатки и преимущества

Аммиак – NH3 , нитрид водорода, при нормальных условиях – бесцветный газ с резким характерным запахом (запах нашатырного спирта), почти вдвое легче воздуха, ядовит. Растворимость NH3 в воде чрезвычайно велика – около 1200 объёмов (при 0 °C) или 700 объёмов (при 20 °C) в объёме воды. В холодильной технике носит название R717, где R – Refrigerant (хладагент), 7 – тип хладагента (неорганическое соединение), 17 – молекулярная масса. Холодильный агент (хладагент) – рабочее вещество холодильной машины, которое при кипении и в процессе изотермического расширения отнимает теплоту от охлаждаемого объекта и затем после сжатия передаёт её охлаждающей среде за счёт конденсации (воде, воздуху и т.п.).

Хладагент является частным случаем теплоносителя. Важным отличием является использование теплоносителей в одном и том же агрегатном состоянии, в то время, как хладагенты обычно используют фазовый переход (кипение и конденсацию).

Основными холодильными агентами являются аммиак, фреоны (хладоны), элегаз и некоторые углеводороды. Следует различать хладагенты и криоагенты. У криоагентов ниже температура кипения. Это не касается появившихся в последнее время компрессионных криостатов, способных охлаждать до температур ниже −120 °C без применения жидкого азота, как это было принято последние сто лет. В качестве холодильного агента при создании оксиликвита используется кислород. Он же служит окислителем.

Принципиальной разницей в использовании холодильных агентов в виде азота, гелия и т.д. является то, что жидкость расходуется и испаряется (как правило, в атмосферу). В холодильных машинах фреон или аналогичный газ ходит по кругу, при помощи компрессора, сжижаясь в конденсаторе, испаряясь в испарителе.

Особого внимания требует расширение применения аммиака. Аммиак по сравнению с углеводородами менее опасен. За прошедшее столетие отношение к аммиаку, как хладагенту, менялось от полного приятия до резкого отторжения, связанного с заполнением рынка хладагентов ХФУ и ГФУ, которые первоначально рассматривались как панацея, обещающая полное вытеснение МНз из холодильной техники. К счастью, этого не произошло. Аммиак, открытый 255 лет назад, с 1859 года применяется как холодильный агент, сначала в абсорбционных машинах, а с 1876 года – в компрессионных. При нулевых потенциалах разрушение озона и глобального Потепления аммиак не вызывает, термодинамически эффективен и абсолютно чист экологически. Энергетические показатели аммиачных холодильных машин и установок высоки: с энергетической точки зрения альтернативы аммиаку нет. Кроме того, аммиак обладает характерным запахом, который позволяет органолептически почти мгновенно определять его утечку. Аммиак легче воздуха и при утечке поднимается в воздух, уменьшая опасность отравления. К сожалению, зачастую эти достоинства аммиака относят к его существенным недостаткам. Действительно, аммиак теоретически взрывоопасен при объемном содержании в воздухе от 15 до 28%, однако, случаи взрыва воздушно-аммиачной смеси в практической деятельности настолько редки, что их можно отнести к разряду легенд многолетней давности, когда в холодильной технике отсутствовала надежная автоматика, а нарушение режимов эксплуатации такой техники приводило к гидроударам и, как следствие последних, – взрывам. В жизнедеятельности человека известно множество случаев взрыва бытового газа, приводящих к трагическим последствиям, но никому и в голову не приходит запретить газоснабжение квартир и домов. Следует обратить внимание и на то, что мгновенная разгерметизация аммиачной холодильной установки не приведет к моментальному выбросу аммиака в атмосферу. Выйдет только паровая фаза, которая составляет незначительную часть от общего содержания аммиака в системе. Остальной жидкий аммиак будет медленно выкипать. Аммиак не текуч в той степени, которая свойственна другим хладагентам, не взаимодействует с черным металлом, а, следовательно, все аммиачное оборудование дешево, в отличие от фреонового, для которого используют в основном цветные металлы. Отрицательные свойства аммиака проявляются только при большом его количестве (несколько тонн) в системе и при условиях, когда могут создаться критические концентрации (до 50–60 грамм на один киловатт производимого холода). В традиционной насосно-циркуляционной системе заправка аммиака составляет около 3 кг на 1 кВт холода. Кроме того, современные средства автоматизации позволяют создавать высоконадежные холодильные комплексы.

Сегодня это достаточно легко решается путем перевода крупных холодильных объектов на аммиачные установки, содержащие минимальное количество аммиака и оснащением аммиачной холодильной техники современными высоконадежными средствами автоматизации.

Это привело к расширению области применения аммиака за рубежом, в частности, к его использованию в системах кондиционирования и холодоснабжения супермаркетов. При этом были приняты меры к снижению опасности выбросов NH3 и в первую очередь к уменьшению количества заправляемого хладагента. Уменьшение количества аммиака при сохранении заданной холодопроизводительности возможно при принятии следующих мер:

•замена систем непосредственного кипения аммиака на системы с промежуточным хладоносителем;

•использование ХМ с малоемкими тешюобменными аппаратами для охлаждения промежуточных хладоносителей;

•применение новых хладоносителей, нейтральных к металлам, экологически безопасных;

•оборудование выпускаемых холодильных машин устройствами и средствами автоматизации, позволяющими локализовать аммиак в случае разгерметизации холодильной машины.

Разработчики холодильного аммиачного оборудования предлагают несколько путей перевооружения холодильных установок.

Первый путь пригоден для крупных АХУ, расположенных в городах вблизи жилых массивов. Это возврат к системе с промежуточным хладоносителем, где недостатки подобных систем охлаждения на современном витке развития технологий исключаются применением нового теплообменного оборудования, приборов автоматизации, арматуры, материалов. Рекомендуется применять блочные малоемкие холодильные агрегаты с дозированной заправкой МНз, в которых в качестве испарителей и конденсаторов применяется высокоэффективная аппаратура пластинчатого типа, в качестве хладоносителей – некорродирующие растворы, а в холодильных камерах батарейные системы охлаждения заменять малопоточными воздухоохладителями. Аммиачное оборудование в данном случае может располагаться как в традиционных центральных машинных отделениях, так и в блочных машинных отделениях контейнерного типа, оборудованных устройствами для полного поглощения аммиака в случае разгерметизации. При этом количество аммиака обычно не превышает 100–150 грамм на 1 кВт холодопроизводительности.

Второй путь модернизации и усовершенствования крупных АХУ, располагающихся в промзонах, вдали от жилых массивов и общественных объектов. Этот путь эффективен для предприятий с большим числом разнотемпературных потребителей холода и обеспечивает снижение аммиако-емкости систем охлаждения почти на порядок.

Третий путь является весьма перспективным, заключается в разработке агрегатированных блочных аммиачных установок непосредственного кипения аммиака по типу фреоновых, так называемых сплит-систем. Холодильные машины с небольшим количеством NH3 размещаются в специальных герметичных контейнерных блоках, а аммиак в случае разгерметизации полностью поглощается нейтрализаторами, не попадая в окружающую среду. Подобные аммиачные установки уже в настоящее время широко применяются в Японии и США.


Холодильные и морозильные камеры. Устройство, виды, применение

Конструктивно все виды торгового холодильного оборудования имеют много общего. Основной несущей конструкцией является металлический каркас различной, в зависимости от назначения оборудования, конфигурации. С внешней и внутренней стороны он облицован пластиком, стеклом либо стальными листами, покрытыми синтетической эмалью. В качестве технологических декоративных элементов могут использоваться: нержавеющая сталь, цветной слоистый пластик; алюминиевый профиль; стекло (плоское, гнутое, цветное); зеркала.

Стенки и дверцы торгового холодильного оборудования имеют многослойную конструкцию. За внешними отделочными материалами следует: гидроизоляционная прослойка (пергамин, пергаментная бумага, полиэтиленовая пленка и др.), а затем теплоизоляционный слой (пенопласт, мипора, стекловата, шлаковата, пенополистирол)

После теплоизоляционного слоя вновь проложена гидроизоляционная прокладка и далее следует внутренняя отделка охлаждаемого пространства. Поскольку внутренняя поверхность охлаждаемых камер может соприкасаться с продуктами, она должна быть выполнена из нейтральным не коррозирующих материалов (нержавеющая сталь, пищевой алюминий, эмалированная сталь).

Для более эффективного использования внутреннего охлаждаемого объема шкафы, прилавки, витрины, камеры оборудуют стеллажами, полками, кассетами, кронштейнами, изготовленными из тех же нейтральных материалов.

Холодильные и морозильные камеры использует широкий круг потребителей – от небольших предприятий до огромных складских комплексов, нуждающихся в создании специальных условий хранения.

По своему назначению, устройству и правилам эксплуатации такие камеры аналогичны маленьким стационарным холодильникам.

По площади, необходимой для размещения товаров в таре, подбирают тип и количество немеханического складского оборудования, площадь которых и составляет потребную грузовую охлаждаемую площадь.

Холодопроизводительность машины должна быть достаточной для поддержания в холодильных камерах заданных температурных режимов и отвода теплопритоков. Расчет потребной холодопроизводительности машины начинают с определения суммы всех теплопритоков по каждой камере в отдельности, а затем по холодильнику в целом (калорический расчет).

Общая сумма теплопритоков включает следующие теплопритоки:

- поступающие через ограждения с наружным вентиляционным воздухом;

- вносимые с продуктами и тарой;

- за счет открывания дверей, пребывания людей в камерах, нагрева ламп освещения.

Определив сумму теплопритоков, выбирают охлаждающую систему – непосредственного или рассольного охлаждения. Непосредственное охлаждение испарительными батареями, в которых происходит кипение хладагента, имеет более широкое распространение благодаря большей экономичности, меньшей громоздкости оборудования и возможности автоматизации процессов охлаждения.

Однако в некоторых случаях вместо системы непосредственного охлаждения целесообразно применять рассольную систему охлаждения, например, при большом удалении холодильных камер от машинного отделения при необходимости обеспечения стабильного температурного режима и если правилами техники безопасности запрещается применять непосредственное охлаждение.

Затраты на установку и эксплуатацию рассольной системы охлаждения оправдывают себя в крупных холодильниках с количеством камер более четырех и потребной холодопрозводительностью машин не менее 13 900 Вт или 12 000 ккал/ч (с учетом переводного коэффициента 1 Вт = = 0,86 ккал/ч).

Расчет холодильной установки непосредственного охлаждения начинают с группировки холодильных камер с примерно одинаковыми температурными режимами и величинами теплопритоков. При этом учитывают, что на две – четыре камеры с равными условиями хранения приходится одна холодильная машина.

Потребную холодопроизводительность машины для каждой группы камер определяют исходя из часового расхода холода и коэффициента рабочего времени.

Часовой расход холода определяется делением суточного расхода холода для данной группы камер по калорическому расчету на продолжительность суток в часах. Коэффициент рабочего времени равен отношению времени работы машины в сутки к продолжительности суток в часах.

Оптимальным временем работы крупных холодильных машин считают 20–22 ч, небольших – 16–17 ч в сутки отсюда значение коэффициента рабочего времени, при котором завод-изготовитель гарантирует бесперебойную работу, для крупных машин равно 0,85, для небольших – 0,75

Для определения потребной холодопроизводительности машины используют приближенный расчет по удельному расходу холода на 1 м2 площади охлаждаемых помещений. Для камер с плюсовым температурным режимом он составляет 75–83 ккал/ч, или 90 – 100 Вт, для камер с температурным режимом хранения -8 «С – 96–104 ккал/ч, или 110–120 Вт.

Виды холодильных и морозильных камер. Такие камеры предназначены для хранения в складских помещениях магазинов запасов скоропортящихся продуктов в течение времени, не превышающего допустимые сроки хранения (3–5 суток). Они могут быть стационарными и сборными.

Стационарные камеры проектируются и строятся в соcтаве торговых зданий.

Сборные холодильные камеры могут устанавливаться Как на новых, так и на действующих предприятиях торговли, где строительство стационарных камер является нецелесообразным или для этого нет соответствующих условий.

Сборные камеры собирают из отдельных щитов – деревянных рам, обшитых с двух сторон металлическими листами, между которыми находится теплоизоляция (пенопласт или пенополиуретан). В охлаждаемом объеме камер боковых стенках установлены полки (решетки) для продуктов. К потолку камер или к специальным штангам крепятся крюки для подвешивания мясных туш. Дверь камеры имеет замок и ручку для открывания ее снаружи и изнутри Уплотнитель двери должен плотно прилегать к дверному проему по всему его контуру, что уменьшает тепловые притоки.

Испарители располагают под потолком камеры. Под ними крепится поддон с трубкой для отвода конденсата при оттаивании испарителя. Внутри камеры имеется закрытый светильник. Охлаждающие агрегаты устанавливают отдельно около камер.

Все большим спросом в условиях развивающейся рыночной экономики пользуются сборно-щитовые холодильные и морозильные камеры различных объемов и конфигураций.

Основные элементы корпуса холодильной камеры дверной блок, стеновые и потолочные панели, половые пане ли, угловые элементы

Дверной блок представляет собой единое изделие, включающее в себя дверную коробку с элементами крепления к корпусу камеры, дверное полотно с навесками, устройство подогрева дверного проема (для дверей морозильных камер).


Список используемой литературы

1. Железний В.П., Биковець Н.П. Pабoта холодильных установок // Холод. – 2004. – 205 с.

2. Овчаренко B.C., Афонский В.Л. Основные аспекты комплексного подхода к расширению применения аммиачного оборудования в холодильной промышленности // Холодильная техника. – 2001. – 112 с.

3. Перелыптейн И.И., Парушин Е.Б. Термодинамические и теплофизические свойства рабочих веществ холодильных машин и тепловых насосов. – М.: Легкая и пищевая промышленность, 2000. – 232 с.

4. Маляренко В.А., Варламов Г.Б., Любчик Г.Н. и др. Энергетические установки и окружающая среда Харьков: ХГАГХ, 2002. – 398 с.

5. Калинь И.М., Васютин В.А., Пустовалов СБ. Условия эффективного применения диоксида углерода в качестве рабочего вещества тепловых насосов // Холодильная техника. – 2003. – 100 с.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:36:36 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
08:40:35 29 ноября 2015

Работы, похожие на Контрольная работа: Холодильное оборудование
... естественной убыли мяса и мясопродуктов при холодильной обработки
... для сохранения мяса и мясопродуктов 2. Характеристика термического состояния мяса и мясопродуктов 3. Технологии холодильной обработки и применяемое ...
Если охлаждение воздуха происходит вследствие кипения хладагента в батареях, расположенных непосредственно в охлаждаемой камере, то такой способ называют непосредственным ...
Для его реализации не нужны теплоносители и, следовательно, не требуется создания более низкой температуры кипения хладагента, как при рассольном охлаждении, что приводит к ...
Раздел: Промышленность, производство
Тип: курсовая работа Просмотров: 7423 Комментариев: 2 Похожие работы
Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать
Организация предприятия общественного питания
Содержание Введение 1. Технико-экономическое обоснование 1.1 Экономико-географическая характеристика района деятельности предприятия 1.2 Расчёт ...
Выбираем теплоизоляционный материал для строительства наружных стен холодильной камеры и стен между охлаждаемой камерой и неохлаждаемыми помещениями - эффективный материал ...
Температуру кипения холодильного агента для фреоновых холодильных машин рекомендуется принимать на 14-16 °С ниже температуры воздуха в камере.
Раздел: Рефераты по экономике
Тип: дипломная работа Просмотров: 19876 Комментариев: 2 Похожие работы
Оценило: 3 человек Средний балл: 5 Оценка: неизвестно     Скачать
Проект реконструкции цеха первичной переработки нефти и получения ...
Введение На ОАО "Сургутнефтегаз" производят дорожный битум, дизельное топливо и бензиновую фракцию. Все эти производства на сегодняшний день нашли ...
Аппараты воздушного охлаждения состоят из пучка труб с коллекторами (сборными трубами), вентилятора с электродвигателем, регулирующих устройств и опорной части.
Существуют печи отличающиеся по способу передачи тепла (радиантные, конвекционные, радиантно-конвекционные), по количеству топочных камер (однокамерные и многокамерные), по способу ...
Раздел: Рефераты по химии
Тип: реферат Просмотров: 16054 Комментариев: 3 Похожие работы
Оценило: 3 человек Средний балл: 5 Оценка: неизвестно     Скачать
... оценка качества бытовых холодильных приборов, реализуемых магазином ...
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ ЮЖНО - УРАЛЬСКИЙ ГОСУДАРСТВЕНЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ...
Жидкий фреон, находящийся под давлением, через отверстие капилляра (8) попадает во внутреннюю полость испарителя (5), переходит в газообразное состояние, в результате чего ...
электрические нагреватели: для обогрева генератора в абсорбционных холодильных агрегатах; для предохранения дверного проема низкотемпературной (морозильной) камеры от выпадения ...
Раздел: Рефераты по маркетингу
Тип: курсовая работа Просмотров: 6668 Комментариев: 2 Похожие работы
Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать
Автоматизация холодильного оборудования
Введение Современный уровень производства пищевых продуктов характеризуется с одной стороны увеличением урожайности полей за счет введения новых ...
Искусственный холод в плодоовощной промышленности используют при предварительном охлаждении, транспортировки, замораживании и хранение плодов и овощей, а также во производства и ...
После загрузки яблоками холодильной камеры предварительно в работу в ручном режиме включают два КМ (мощность привода КМ 5,5 кВт), то есть КМ №1 и КМ №2. Этим обеспечивается большая ...
Раздел: Промышленность, производство
Тип: курсовая работа Просмотров: 660 Комментариев: 4 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Проектирование адиабатной выпарной установки термического ...
Содержание Ведение 1. Анализ состояния вопроса и обоснование актуальности темы 1.1 Обзор существующих методов деминерализации и выбор типа установки ...
... можно разделить на следующие типы: испарительные; мгновенного вскипания (адиабатные); с плёночными аппаратами; с промежуточным теплоносителем; с кипением в псевдоожиженном слое
Дистилляционная установка, изображённая на рисунке, состоит из испарителя включающего нагревательный элемент, в который подводится тепло от внешнего источника (чаще всего пар) для ...
Раздел: Рефераты по физике
Тип: дипломная работа Просмотров: 2022 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Производство синтетического аммиака при среднем давлении. Расчёт ...
Санкт-Петербургский государственный инженерно-экономический университет Факультет экономики и менеджмента в химической промышленности Кафедра ...
Нижние ряды труб высокого давления погружены в кипящий жидкий аммиак, залитый в котел, а верхние трубы охлаждаются парами аммиака.
Охлажденная газовая смесь выходит из аппарата через нижний коллектор б при температуре 10-20 °С.. Охлаждающая поверхность змеевиков-испарителей, установленных на крупных агрегатах ...
Раздел: Рефераты по химии
Тип: реферат Просмотров: 5692 Комментариев: 9 Похожие работы
Оценило: 12 человек Средний балл: 3.3 Оценка: 3     Скачать
Регулировка охлаждения компьютерных систем
... проекту: 18 рисунков, 20 таблиц, 24 источника, 3 листа чертежей формата А1. Объект исследований: регулировка охлаждения компьютерных систем. Предмет ...
К радиатору по входному шлангу из помпы закачивается охлажденная вода (хладагент), проходит через него и по выходному шлангу, будучи нагретой теплом процессора, движется ко второму ...
Теплоносителем в первых четырех тестах является вода внутреннего контура охлаждения, а в двух последних тестах - воздух внутри системного блока.
Раздел: Рефераты по информатике, программированию
Тип: дипломная работа Просмотров: 3549 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Все работы, похожие на Контрольная работа: Холодильное оборудование (2149)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151205)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru