Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Курсовая работа: Тяговый расчет автомобиля ГАЗ 3307

Название: Тяговый расчет автомобиля ГАЗ 3307
Раздел: Рефераты по транспорту
Тип: курсовая работа Добавлен 23:25:13 11 января 2010 Похожие работы
Просмотров: 2871 Комментариев: 2 Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать

Федеральное агентство по образованию

ГОУ ВПО ВОСТОЧНО-СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Автомобили»

КУРСОВАЯ РАБОТА

Тяговый расчет автомобиля ГАЗ-3307

Улан-Удэ 2007


Содержание

1. Построение внешней скоростной характеристики автомобильного двигателя

2. Тяговый баланс автомобиля

3. Динамический фактор автомобиля

4. Характеристика ускорений автомобиля

5. Характеристика времени и пути разгона автомобиля

6. Мощностной баланс автомобиля

7. Топливно-экономическая характеристика автомобили

1. Построение внешней скоростной характеристики автомобильного двигателя

Наиболее полные сведения о параметрах двигателя дает его внешняя скоростная характеристика. Она представляющая собой зависимость эффективной мощности – Ne , [кВт]; эффективного крутящего момента – Me , [Н×м]; удельного расхода топлива – ge , [г/кВт×ч]; часового расхода топлива – Gт , [кг/ч], от частоты вращения коленчатого вала ne , [об/мин], при установившемся режиме работы двигателя и максимальной подаче топлива.

Определение текущего значения эффективной мощности от частоты вращения коленчатого вала двигателя, производится по эмпирической зависимости, предложенной С.Р. Лейдерманом:

, [кВт]

где Nе max =84,5 [кВт] - максимальная эффективная мощность двигателя;

ne - текущая частота вращения, [об/мин];

nN =3200 [об/мин] - частота вращения при максимальной мощности;

коэффициенты а=в=с=1.

Определяем значения наименьшей устойчивой – ne min , и максимальной – ne max , частот вращения коленчатого вала двигателя.

ne min = 0,13× nN =0,13×3200=416=500 [об/мин],

ne max = 1,2× nN =1,2×3200=3840=3800 [об/мин].

Полученный диапазон частот вращения коленчатого вала разбиваем на двенадцать значений через интервал в 300 [об/мин].

Для каждого значения ne , с использованием уравнения Лейдермана, определяем значения эффективной мощности двигателя Ne .

Часть мощности двигателя затрачивается на привод вспомогательного оборудования (генератор, насос системы охлаждения двигателя, компрессор, насос гидроусилителя руля и др.), и лишь оставшаяся мощность Ne ¢ - мощность нетто, используется для движения автомобиля.

Ne ¢ = 0,9×Ne , [кВт].

Для расчета графика эффективного крутящего момента используем выражение вида:

, [Н×м].

Часть эффективного крутящего момента двигателя – Me затрачивается на привод навесного вспомогательного оборудования, и лишь оставшаяся его часть, так называемый крутящий момент нетто – Мe ¢, используется для движения автомобиля. Для определения момента нетто воспользуемся выражением:

Мe ¢ = 0,9 × Мe , [Н×м]

Для расчета удельного расхода топлива бензиновых двигателей используют эмпирическую зависимость вида:


, [г / кВт×ч]

ge min =313 [г / кВт×ч] – минимальный удельный расход топлива.

Для определения часового расхода топлива воспользуемся формулой:

, [кг/ч]

Полученные при расчетах данные заносим в таблицу 1.

На основе результатов расчетов таблицы, строим графики внешней скоростной характеристики двигателя (Приложение). На графике внешней скоростной характеристики отмечаем:

Максимальная мощность нетто - Nе ¢, [кВт];

Максимальный крутящий момент нетто - Mе ¢, [Н×м];

Минимальный удельный расход топлива - gе min , [г / кВт×ч];

Частоты ne вращения коленчатого вала двигателя, соответствующие:

- максимальной мощности двигателя nN , [об/мин];

- максимальному крутящему моменту nM , [об/мин];

- минимальному удельному расходу топлива ng ,[об/мин].


Таблица 1. Параметры внешней скоростной характеристики двигателя марки ЗМЗ-53

ne , об/мин

500

800

1100

1400

1700

2000

2300

2600

2900

3200

3500

3800

Ne ,

кВт

14,94

25,09

35,60

46,07

56,07

65,19

73,01

79,12

83,08

84,50

82,95

78,00

Ne ',

кВт

13,45

22,58

32,04

41,46

50,46

58,67

65,71

71,20

74,78

76,05

74,65

70,20

Me ,

Н∙м

285,43

299,46

309,07

314,24

314,98

311,28

303,16

290,60

273,61

252,18

226,32

196,03

Me ',

Н∙м

256,88

269,52

278,16

282,82

283,48

280,16

272,84

261,54

246,24

226,96

203,69

176,43

ge , г/кВт∙ч

324,55

301,26

283,47

271,19

264,40

263,12

267,33

277,05

292,28

313,00

339,23

370,95

Gт ,

кг/ч

4,85

7,56

10,09

12,49

14,82

17,15

19,52

21,92

24,28

26,45

28,14

28,93


2. Тяговый баланс автомобиля

Тяговый баланс автомобиля - это совокупность графиков зависимостей силы тяги на ведущих колесах Fк , [Н] (на различных передачах), а также суммы сил сопротивления качению Ff , [Н] и в автомобиля Va , [км/ ч]. Графики сил тяги на колесах автомобиля строим для всех ступеней коробки перемены передач.

Кинематическая схема КПП и ГП.

Расчет сил тяги на колесах для каждой передачи – Fki производится по формуле:

, [Н]

hТР - коэффициент полезного действия трансмиссии;

UТР - передаточное число трансмиссии;

rк - радиус качения колеса, [м].

КПД трансмиссии автомобиля определяется на основании потерь мощности на трение:

hтр = 0,98К ×0,97L × 0,99M

K - число пар цилиндрических шестерен в трансмиссии автомобиля, через которые передается крутящий момент на i-той передаче;

L - число пар конических или гипоидных шестерен;

M - число карданных шарниров.

Для определения К,L,M необходимо использовать кинематическую схему автомобиля, данные заносим в таблицу 2.

Таблица 2

Передачи

K

L

M

hтр

I

2

1

3

0,904

II

2

1

3

0,904

III

2

1

3

0,904

IV

0

1

3

0,9412

Передаточное число трансмиссии автомобиля определяется как произведение:

UТР = UКПП × UРК × UГП

UКПП - передаточное число коробки перемены передач;

UРК - передаточное число раздаточной коробки или делителя;

UГП - передаточное число главной передачи.

Для определения этих значений также воспользуемся кинематической схемой автомобиля, полученные значения занесем в таблицу 3.


Таблица 3.

UКПП

UРК

UГП

UТР

I

6,55

1

6,17

40,4135

II

3.09

19,0653

III

171

10,5507

IV

1,00

6,17

При расчетах радиусов качения колес, в качестве исходных данных, используют статический радиус - rстат . При этом следует учитывать, что радиус качения rк обычно несколько больше статического и определяется индивидуально для диагональных и радиальных шин. На автомобиле ГАЗ -3307 установлены радиальные шины, поэтому радиус качения колеса рассчитываем по следующей формуле:

rк = 1,04 × rстат , [м];

rстат = 0,465

rк = 1,04 × 0,465 = 0,4836 [м]

При расчетах зависимостей силы тяги на колесах автомобиля крутящий момент двигателя нетто - Мe ́ берем из таблицы 1. Также для построения графика нам необходимо рассчитать скорость движения автомобиля на каждой передачи в зависимости от оборотов двигателя.

, [км/ ч]

Значения силы тяги на колесах и скорости автомобиля, рассчитанные для каждой передачи, заносим в таблицу 4.


Таблица 4. Значения силы тяги на колесах и скорости автомобиля на четырех передачах

ne , [об/мин]

500

800

1100

1400

1700

2000

2300

2600

2900

3200

3500

3800

1

Vа

2,26

3,61

4,96

6,32

7,67

9,02

10,38

11,73

13,08

14,44

15,79

17,14

Mе '

256,88

269,52

278,16

282,82

283,48

280,16

272,84

261,54

246,24

226,96

203,69

176,43

Fк

19406,3

20360,8

21013,8

21365,4

21415,6

21164,5

20611,9

19758,0

18602,6

17145,9

15387,8

13328,2

2

Vа

4,78

7,65

10,52

13,39

16,26

19,13

21,99

24,86

27,73

30,60

33,47

36,34

Mе '

256,88

269,52

278,16

282,82

283,48

280,16

272,84

261,54

246,24

226,96

203,69

176,43

Fк

9155,0

9605,3

9913,3

10079,2

10102,9

9984,4

9723,8

9320,9

8775,9

8088,6

7259,2

6287,7

3

Vа

8,64

13,82

19,01

24,19

29,38

34,56

39,74

44,93

50,11

55,30

60,48

65,66

Mе '

256,88

269,52

278,16

282,82

283,48

280,16

272,84

261,54

246,24

226,96

203,69

176,43

Fк

5066,4

5315,5

5486

5577,8

5590,9

5525,3

5381,1

5158,2

4856,5

4476,2

4017,2

3479,6

4

Vа

14,77

23,64

32,50

41,37

50,23

59,10

67,96

76,83

85,69

94,56

103,42

112,29

Mе '

256,88

269,52

278,16

282,82

283,48

280,16

272,84

261,54

246,24

226,96

203,69

176,43

Fк

3084,7

3236,4

3340,2

3396,1

3404,1

3364,1

3276,3

3140,6

2956,9

2725,4

2445,9

2118,5


Далее определяем силы сопротивления качению колес автомобиля по дорожному покрытию, используя выражение:

, [Н]

ma = 7850 [кг] - масса полностью загруженного автомобиля;

g = 9,81 [м/с2 ] - ускорение свободного падения;

f - коэффициент сопротивления качению автомобильного колеса.

Величина коэффициента сопротивления качению колеса – f, зависит от скорости автомобиля. Для его определения используют выражение, предложенное Б.С. Фалькевичем:

Коэффициент сопротивления качению колеса автомобиля рассчитываем для двух типов дорог с асфальтобетонным покрытием и для грунтовой дороги.

f 0 = 0,018- коэффициент сопротивления качению колес автомобиля по асфальтобетону;

f 0 = 0,03 - коэффициент сопротивления качению колес автомобиля по грунтовой дороге.

Для расчета действующей на автомобиль силы сопротивления воздуха воспользуемся выражением вида:

, [Н]


Кв – коэффициент обтекаемости формы автомобиля;

Sx –площадь проекции автомобиля на плоскость перпендикулярную продольной оси, [м2 ].

При известном значении безразмерного коэффициента аэродинамического сопротивления Сх = 0,91 можно легко определить значение коэффициента обтекаемости Кв по выражению, предложенному академиком Е.А. Чудаковым:

Кв = 0,5 × Сх × r в , [кг/м3 ]

r в = 1,225 , [кг/м3 ] – плотность воздуха.

Кв = 0,5 × 0,91 × 1,225 = 0,557375 [кг/м3 ]

Для нахождения площади Миделя автомобиля Sx воспользуемся выражением:

Sx = 0,78 × Ва Н, [м2 ]

Ва = 1,630 [м] – колея передних колес

Н = 2,905 [м] - высота автомобиля.

Sx =1,630 × 2,905 = 4,73515 [м2 ]

Значение максимального значения скорости - Va max выбираем таким, чтобы оно было примерно на 10% больше наибольшего значения скорости, определенного для высшей передачи.

На графике тягового баланса должны быть нанесены линии, показывающие предельные величины сил сцепления ведущих колес, полностью загруженного автомобиля с дорогой, при следующих значениях коэффициента сцепления:

- = 0,8 - сухой асфальтобетон;

- = 0,6 - сухая грунтовая дорога;

- = 0,4 - мокрый асфальтобетон;

- = 0,2 - укатанная снежная дорога.

Значения предельных сил сцепления ведущих колес автомобиля с дорогой определяются по формуле:

Fсц = mк × g × j , [Н]

mк = 5815 [кг] - масса автомобиля, приходящаяся на заднюю ось.

Сила сцепления при ведущей задней оси:

Fсц , Н

Коэффициент сцепления

45636,12

0,8

34227,09

0,6

22818,06

0,4

11409,03

0,2

График тягового баланса (Приложение) строим на основе данных, таблиц 4 и 5. На графике отмечаем два значения максимальных скоростей движения автомобиля Va max . на дороге с асфальтобетонным покрытием для двух высших передач.


Таблица 5. Рассчитанные значения сил сопротивления движению заносим в таблицу 5.

Vа , [км/ч]

0

10

20

30

40

50

60

70

80

90

100

110

120

130

f1

0,018

0,01809

0,01836

0,01881

0,01944

0,02025

0,02124

0,02241

0,02376

0,02529

0,027

0,02889

0,03096

0,0332

Ff1 , [H]

1386,1

1393,08

1413,87

1448,53

1497,04

1559,42

1635,66

1725,76

1829,72

1947,54

2079,23

2224,77

2384,18

2557,4

f2

0,03

0,03015

0,0306

0,03135

0,0324

0,03375

0,0354

0,03735

0,0396

0,04215

0,045

0,04815

0,0516

0,0553

Ff2 , [H]

2310,2

2321,80

2356,46

2414,21

2495,07

2599,03

2726,10

2876,26

3049,53

3245,90

3465,38

3707,95

3973,63

4262,4

Fw , [H]

0

20,3646

81,4584

183,281

325,833

509,115

733,126

997,866

1303,33

1649,53

2036,46

2464,11

2932,50

3441,6

Fw +Ff1 , [H]

1386,1

1413,44

1495,33

1631,81

1822,87

2068,53

2368,78

2723,62

3133,05

3597,07

4115,69

4688,89

5316,68

5999,0

Fw +Ff2 , [H]

2310,2

2342,17

2437,91

2597,48

2820,9

3108,15

3459,22

3874,1

4352,87

4895,44

5501,84

6172,07

6906,14

7704


3. Динамический фактор автомобиля

Динамический фактор автомобиля представляет собой совокупность динамических характеристик, номограммы нагрузок автомобиля и графика контроля буксования его колес. Динамический фактор автомобиля дает представление о динамических свойствах автомобиля при заданных дорожных условиях и нагрузке автомобиля.

Динамическая характеристика - это зависимость динамического фактора автомобиля с полной нагрузкой от скорости его движения Di = f(Va ). Графики динамического фактора строят для тех же условий движения, что и графики тягового баланса, т.е. для каждой передачи i. Динамическим фактором D автомобиля называется отношение разности силы тяги и силы сопротивления воздуха к весу автомобиля:

На графике динамической характеристики показываем также зависимость суммарного коэффициента сопротивления дороги y = f(Va ), который в случае разгона автомобиля на ровной, горизонтальной поверхности дороги численно равен коэффициенту сопротивления качению:

y = f + tga, где a - угол подъема дороги.

Суммарный коэффициент сопротивления дороги в нашем случае равен коэффициенту сопротивления качения.

Полученные при расчетах динамического фактора автомобиля данные заносим в таблицу 6.


Таблица 6. Значения параметров динамического фактора автомобиля на 1,2,3,4-ой передачах

пер-чи

nе , об/мин

500

800

1100

1400

1700

2000

2300

2600

2900

3200

3500

3800

1

Vа , км/ч

2,256

3,609

4,962

6,316

7,669

9,023

10,376

11,729

13,083

14,436

15,790

17,143

Fw , H

1,036

2,653

5,015

8,123

11,978

16,578

21,925

28,017

34,856

42,440

50,771

59,847

Di

0,252

0,264

0,273

0,277

0,278

0,275

0,267

0,256

0,241

0,222

0,199

0,172

2

Va , км/ч

4,781

7,650

10,519

13,388

16,257

19,126

21,994

24,863

27,732

30,601

33,470

36,339

Fw , H

4,656

11,919

22,534

36,501

53,820

74,491

98,514

125,89

156,61

190,69

228,12

268,91

Di

0,119

0,125

0,128

0,130

0,130

0,129

0,125

0,119

0,112

0,103

0,091

0,078

3

Va , км/ч

8,640

13,824

19,008

24,192

29,376

34,560

39,744

44,928

50,112

55,296

60,480

65,664

Fw , H

15,202

38,918

73,579

119,18

175,73

243,23

321,68

411,07

511,40

622,68

744,91

878,08

Di

0,066

0,069

0,070

0,071

0,070

0,069

0,066

0,062

0,056

0,050

0,042

0,034

4

Va , км/ч

14,774

23,639

32,504

41,369

50,233

59,098

67,963

76,827

85,692

94,557

103,42

112,28

Fw , Н

44,453

113,8

215,15

348,51

513,87

711,2

940,6

1202

1495,4

1820,8

2178,2

2567,6

Di

0,039

0,041

0,041

0,040

0,038

0,034

0,030

0,025

0,019

0,012

0,003

-0,006

Таблица 7. Значение коэффициентов суммарного сопротивления движению автомобиля

Va , км/ч

0

10

20

30

40

50

60

70

80

90

100

110

120

130

ψ1

0,018

0,018

0,018

0,019

0,019

0,020

0,021

0,022

0,024

0,025

0,027

0,029

0,031

0,033

ψ2

0,030

0,030

0,031

0,031

0,032

0,034

0,035

0,037

0,040

0,042

0,045

0,048

0,052

0,055


С изменением веса автомобиля динамический фактор изменяется, чтобы не пересчитывать при каждом изменении нагрузки автомобиля величину динамического фактора, динамическую характеристику дополняют номограммой нагрузок. Для этого мы должны на графике добавить еще одну шкалу D0 динамического фактора для автомобиля в снаряженном состоянии.

Масштаб для шкалы Do определяем по формуле:

аа - масштаб шкалы динамического фактора для автомобиля с полной нагрузкой;

mo - собственная масса автомобиля в снаряженном состоянии, с учетом массы водителя (масса водителя 70 кг.).

аа = 0,01

mo = 3350+70 = 3420 кг.

mа = 7850 кг.

a0 =0,01∙(3420/7850) = 0,0043

Равнозначные деления шкал Do и Da соединяем прямыми линиями. График контроля буксования представляет собой зависимость динамического фактора по сцеплению колес автомобиля с дорогой от массы автомобиля. Он позволяет определить предельную возможность движения автомобиля при гарантии отсутствия буксования его колес.

Сначала по формулам, приведенным ниже, определяют предельные значения динамического фактора по сцеплению для автомобиля с полной нагрузкой - Da сц и в снаряженном состоянии - Dо сц для реальных коэффициентов сцепления колес автомобиля с дорогой - jх , в диапазоне от jх = 0,1 ¸ 0,8

,

,

mсц =5815 [кг] - масса, приходящаяся на заднюю ось при полной нагрузке;

mа =7850 [кг];

mо сц = 2015 [кг] - масса, приходящаяся на заднюю ось в снаряженном состояния;

mо =7850 [кг].

Рассчитываем значения динамического фактора по сцеплению для автомобиля с полной нагрузкой - Da сц и в снаряженном состоянии - Dо сц , полученные значения заносим в таблицу 8.

Таблица 8.

Коэффициент сцепления

Da сц

Dо сц

0,1

0,074

0,06

0,2

0,148

0,12

0,3

0,22

0,18

0,4

0,29

0,24

0,5

0,37

0,3

0,6

0,44

0,36

0,7

0,51

0,42

0,8

0,59

0,48

Затем предельные значения динамического фактора Da сц по сцеплению откладываем по оси Dа и полученные точки соединяем прямой штриховой линией. На каждой линии указываем величину коэффициента сцепления jх .

На графике динамической характеристики (Приложение) отмечаем значение максимальной скорости движения автомобиля Va max на дороге с асфальтобетонным покрытием для высшей передачи.

4. Характеристика ускорений автомобиля

Характеристика ускорений - это зависимость ускорений автомобиля от скорости ja i = f(Va ), [м/с2 ], при его разгоне на каждой передаче.

Указанные зависимости строим для случая разгона полностью загруженного автомобиля, на ровной горизонтальной дороге с асфальтобетонным покрытием. Величину ускорений при разгоне автомобилей рассчитываем из выражения:

, [м/с2 ]

y - коэффициент суммарного дорожного сопротивления движения автомобиля по асфальтобетонному покрытию (y = f );

dвр – коэффициент, учитывающий инерцию вращающихся масс при разгоне автомобиля.

Коэффициент dвр рассчитываем по формуле:

Jм = 0,550 [кг/м2 ] - момент инерции маховика и разгоняющихся деталей двигателя;

Jк = 8,330 [кг/м2 ] - момент инерции колеса автомобиля;

n = 6 - общее число колес автомобиля.

Значения коэффициента dвр и ускорений при разгоне автомобиля рассчитываем для каждой передачи в основной коробке и включения пониженной передачи в раздаточной коробке. Полученные при расчетах значения заносим в таблицу 9.

Таблица 9. Значения ускорений, действующих при разгоне автомобиля на 1,2,3,4 передачах

пер-чи

nе ,

об/мин

500

800

1100

1400

1700

2000

2300

2600

2900

3200

3500

3800

1

Vа , км/ч

2,256

3,609

4,962

6,316

7,669

9,023

10,376

11,729

13,083

14,436

15,790

17,2

Di

0,252

0,264

0,273

0,277

0,278

0,275

0,267

0,256

0,241

0,222

0,199

0,17

ψ1

0,018

0,018

0,018

0,018

0,018

0,018

0,018

0,018

0,018

0,018

0,018

0,01

Di1

0,234

0,246

0,255

0,259

0,260

0,257

0,249

0,238

0,223

0,204

0,181

0,15

jai , м/с2

1,562

1,645

1,701

1,731

1,735

1,713

1,664

1,589

1,488

1,361

1,208

1,02

2

Vа , км/ч

4,781

7,650

10,519

13,388

16,257

19,126

21,994

24,863

27,732

30,601

33,470

36,339

Di

0,119

0,125

0,128

0,130

0,130

0,129

0,125

0,119

0,112

0,103

0,091

0,07

ψ1

0,018

0,018

0,018

0,018

0,018

0,018

0,018

0,019

0,019

0,019

0,019

0,01

Di1

0,101

0,107

0,110

0,112

0,112

0,110

0,107

0,101

0,093

0,084

0,072

0,05

jai , м/с2

0,878

0,928

0,962

0,978

0,978

0,962

0,929

0,879

0,813

0,730

0,630

0,51

3

Vа , км/ч

8,640

13,824

19,008

24,192

29,376

34,560

39,744

44,928

50,112

55,296

60,480

65,6

Di

0,066

0,069

0,070

0,071

0,070

0,069

0,066

0,062

0,056

0,050

0,042

0,03

ψ1

0,018

0,018

0,018

0,019

0,019

0,019

0,019

0,020

0,020

0,021

0,021

0,02

Di1

0,048

0,050

0,052

0,052

0,052

0,050

0,046

0,042

0,036

0,029

0,021

0,01

jai , м/с2

0,441

0,467

0,482

0,486

0,478

0,459

0,429

0,388

0,336

0,272

0,197

0,11

4

Vа , км/ч

14,774

23,639

32,504

41,369

50,233

59,098

67,963

76,827

85,692

94,557

103,42

112

Di

0,039

0,041

0,041

0,040

0,038

0,034

0,030

0,025

0,019

0,012

0,003

-0,00

ψ1

0,018

0,019

0,019

0,020

0,020

0,021

0,022

0,023

0,025

0,026

0,028

0,02

Di1

0,021

0,022

0,022

0,020

0,017

0,013

0,008

0,002

-0,006

-0,014

-0,024

-0,03

jai , м/с2

0,201

0,208

0,204

0,189

0,163

0,126

0,077

0,018

-0,053

-0,135

-0,228

-0,33

По данным таблицы 8 строим график ускорений (Приложение).

5. Характеристика времени и пути разгона автомобиля

Характеристика разгона представляет собой зависимости времени t = f(Va ), [c] и пути S = f(Va ), [м], разгона полностью загруженного автомобиля, на отрезке ровного горизонтального шоссе с асфальтобетонным покрытием. При определении времени разгона воспользуемся графиком зависимости ja i = f(Va ).

Время движения автомобиля, при котором его скорость возрастает на величину DVi , определяется по закону равноускоренного движения:

, [c]

Величину интервала скоростей DVi выбираем равной 3 км/час. При этом ускорение движения автомобиля на интервале скоростей интегрирования равно полусумме ускорений в начале и конце интервала.

Суммарное время разгона автомобиля на заданной передаче от минимальной скорости Va min до максимальной скорости Va max находим суммированием времени разгона на интервалах:

, [c]

q – общее число интервалов.


Время переключения передач принимаем равным 3 секунды и скорость движения автомобиля принимаем постоянной.

Полученные при расчетах данные заносим в таблицу 10.

Таблица 10. Значения времени разгона автомобиля

∆Vi, [км/ч]

3

3

3

3

3

3

3

3

3

3

3

3

ji-1, [м/с2]

0

1,575

1,728

1,724

1,575

1,26

0,972

0,945

0,9

0,846

0,72

0,666

ji, [м/с2]

1,575

1,728

1,724

1,575

1,26

1,207

0,945

0,9

0,846

0,72

0,666

0,477

∆t, [с]

1,05

0,504

0,482

0,505

0,587

0,6755

0,869

0,903

0,954

1,064

1,202

1,458

t, [с]

1,56

2,04

2,55

3,13

3,814

4,683

5,587

6,541

7,605

8,808

10,266

0,477

0,414

0,387

0,36

0,333

0,306

0,27

0,225

0,189

0,085

0,063

0,045

0,032

0,414

0,387

0,36

0,333

0,306

0,27

0,225

0,189

0,108

0,063

0,045

0,032

0,027

1,870

2,08

2,231

2,405

2,608

2,893

3,367

4,025

5,611

11,261

15,432

21,645

28,248

12,137

14,21

16,448

18,853

21,462

24,355

27,722

31,74

37,36

48,621

64,053

85,698

113,947

Путь разгона автомобиля находим, используя результаты расчетов времени разгона (таблица 10).

При равноускоренном движении в интервале скоростей DVi = Vi - Vi-1 путь, проходимый автомобилем:

DSi = (Vi-1 + Vi ) × Dti / 7,2 [м]

Путь, проходимый автомобилем при его разгоне, от минимальной скорости Va min = 0 до максимальной - Va max , находим, суммируя расстояния DSi на интервалах:


[м]

q – общее число интервалов.

Путь, пройденный автомобилем за время tп переключения передачи с индексом i на передачу с индексом i+1 составляет:

DSП = Vi max × tП

DSП (1-2) = 15 [м]

DSП (2-3) = 27 [м]

DSП (3-4) = 51 [м]

Данные, полученные при расчете пути разгона автомобиля, заносим в таблицу 11.

Таблица 11. Значения пути разгона автомобиля

∆t, [с]

1,0582

0,5045

0,4828

0,5052

0,5878

0,6755

0,8694

0,90334

0,9545

1,0642

1,2025

1,4581

Vi-1+Vi, [км/ч]

3

9

15

21

27

33

39

45

51

57

63

69

∆Si, [м]

0,4409

0,6307

1,0058

1,4735

2,2045

3,0964

4,7093

5,6458

6,7614

8,4255

10,5218

13,9739

S, [м]

1,0716

1,6365

2,4793

3,678

5,301

7,8057

10,3552

12,4073

15,187

18,9474

24,4958

Продолжение табл. 11

1,8705574

2,0807

2,2311

2,405

2,6082

2,8935

3,367

4,0257

5,611

11,261

15,432

21,645

28,2485

75

81

87

93

99

105

111

117

123

129

135

141

147

19,484973

23,4082

26,9596

31,0646

35,8633

42,1971

51,9079

65,4186

95,866

201,764

289,351

423,881

576,74

33,458921

42,8932

50,3679

58,0243

66,9279

78,0604

94,1051

117,326

161,284

297,63

491,116

713,233

1000,62

По данным таблиц 10 и 11 строим график времени и пути разгона автомобиля (Приложение).

6. Мощностной баланс автомобиля

Мощностной баланс автомобиля представляет собой совокупность зависимостей мощностей на ведущих колесах автомобиля NК i = f(Va ), [кВт], для всех передаточных чисел трансмиссии, мощностей сопротивления дороги Ny = f(Va ), [кВт] и воздуха Nw =f(Va ), [кВт], от скорости движения Va , [км/ч].

Развиваемую на коленчатом валу двигателя мощность нетто - Nе ¢ = 0,9 × Nе берем из таблицы 1.

Определим мощность, приведенную от двигателя к колесам автомобиля, на каждой передаче в КПП с учетом потерь в трансмиссии:

Nк i = Nе ¢ × hТР

Полученные при расчетах данные заносим в таблицу 12.

Таблица 12. Значения мощности на колесах автомобиля на 1,2,3,4 передачах

пер-чи

ne, [об/мин]

500

800

1100

1400

1700

2000

2300

2600

2900

3200

3500

3800

1

Vа , [км/ч]

2,26

3,61

4,96

6,32

7,67

9,02

10,38

11,73

13,08

14,44

15,79

17,14

Nе ', [кВт]

13,45

22,58

32,04

41,46

50,46

58,67

65,71

71,20

74,78

76,05

74,65

70,20

Nк , [H]

12,16

20,41

28,96

37,48

45,62

53,04

59,40

64,37

67,60

68,75

67,48

63,46

2

Vа , [км/ч]

4,78

7,65

10,52

13,39

16,26

19,13

21,99

24,86

27,73

30,60

33,47

36,34

Nе ', [кВт]

13,45

22,58

32,04

41,46

50,46

58,67

65,71

71,20

74,78

76,05

74,65

70,20

Nк , [H]

12,16

20,41

28,96

37,48

45,62

53,04

59,40

64,37

67,60

68,75

67,48

63,46

3

Vа , [км/ч]

8,64

13,82

19,01

24,19

29,38

34,56

39,74

44,93

50,11

55,30

60,48

65,66

Nе ', [кВт]

13,45

22,58

32,04

41,46

50,46

58,67

65,71

71,20

74,78

76,05

74,65

70,20

Nк , [H]

12,16

20,41

28,96

37,48

45,62

53,04

59,40

64,37

67,60

68,75

67,48

63,46

4

Vа , [км/ч]

14,77

23,64

32,50

41,37

50,23

59,10

67,96

76,83

85,69

94,56

103,42

112,29

Nе ', [кВт]

13,45

22,58

32,04

41,46

50,46

58,67

65,71

71,20

74,78

76,05

74,65

70,20

Nк , [H]

12,66

21,25

30,16

39,02

47,50

55,22

61,85

67,02

70,38

71,58

70,26

66,07

Определяем мощность, затрачиваемую на преодоление сопротивления воздуха:

Определяем мощность суммарного сопротивления дороги из выражения:

Fy = Ff + Fa,

причем Fa - сила, затрачиваемая на преодоление автомобилем подъема. Поскольку расчет мощностного баланса ведется для случая разгона полностью загруженного автомобиля на ровной горизонтальной опорной поверхности дороги (Fa = 0), выражение учитывает только силу сопротивления качению Ff . Величину Ff выбираем из таблицы 5 для асфальтобетонного и грунтового покрытия.

Рассчитанные значения заносим в таблицу 13.

Таблица 13. Значения мощности, затрачиваемой автомобилем на сопротивление движению

Vа , [км/ч]

10

20

30

40

50

60

70

80

90

100

110

120

130

Ff1 , [H]

1393

1413,8

1448,5

1497,0

1559,4

1635,6

1725,7

1829,7

1947,5

2079,2

2224,7

2384,1

2557,4

Nf1 , [кВт]

3,87

7,85

12,07

16,63

21,66

27,26

33,56

40,66

48,69

57,76

67,98

79,47

92,35

Ff2, [H]

2321,8

2356,4

2414,2

2495,0

2599,

2726,1

2876,2

3049,5

3245,9

3465,3

3707,9

3973,6

4262,4

Nf2 , [кВт]

6,45

13,09

20,12

27,72

36,10

45,44

55,93

67,77

81,15

96,26

113,30

132,45

153,92

Nw , [кВт]

0,06

0,45

1,53

3,62

7,07

12,22

19,40

28,96

41,24

56,57

75,29

97,75

124,28

Nw +Nf1 , [кВт]

3,93

8,31

13,60

20,25

28,73

39,48

52,96

69,62

89,93

114,32

143,27

177,22

216,63

Nw +Nf2 , [кВт]

6,51

13,54

21,65

31,34

43,17

57,65

75,33

96,73

122,39

152,83

188,59

230,20

278,20

График мощностного баланса автомобиля (Приложение) строим для каждой передачи КПП. На графике отмечаем:

- значение максимальной скорости движения автомобиля Va max на дороге с асфальтобетонным покрытием для высшей передачи;

- графики мощности, подведенной от двигателя к колесам автомобиля - NК ;

- графики мощности двигателя нетто на коленчатом валу Nе ¢.

7. Топливно-экономическая характеристика автомобиля

Топливно-экономическая характеристика автомобиля позволяет определять расход топлива в зависимости от скорости его движения. Она представляет собой график зависимости путевого расхода топлива от скорости автомобиля Qs = f(Va). Этот график характеризует топливную экономичность автомобиля при его движении с постоянной скоростью и позволяет определить расход топлива при известных значениях этой скорости Va и суммарной мощности сопротивлений дороги Ny и воздуха Nw . Графики топливно-экономической характеристики автомобиля строим для его движения на двух высших передачах, с полной нагрузкой, для двух типов дорог. Расчет топливно-экономической характеристики ведем на основе тягового баланса автомобиля, функции зависимости удельного расхода топлива ge = f(ne )

Сначала рассчитываем часовой расход топлива по формуле:

, [кг/ч]

ge – функция зависимости удельного расхода топлива от частоты вращения коленчатого вала двигателя, [г/кВт×ч] берем из таблицы 1;

Ny + Nw - суммарная мощность сопротивления движению автомобиля, [кВт];

Ku - коэффициент, учитывающий изменение удельного расхода топлива - ge в зависимости от коэффициента использования мощности двигателя U.

Численные значения коэффициента Ku рассчитываем с помощью эмпирической формулы:


Коэффициент использования мощности двигателя U рассчитываем по следующей формуле:

,

Значения путевого расхода топлива определяем по выражению:

rТ = 0,73 , [г/см3 ] - плотность бензина;

Полученные при расчетах топливно-экономической характеристики значения для двух высших передач и для двух типов дорожного покрытия заносим в таблицы 14.

Таблицы 14. Значения путевого расхода топлива автомобиля ГАЗ-3307 на 3,4 передачах при движении автомобиля по асфальтобетону

ne, [об/мин]

500

800

1100

1400

1700

2000

2300

2600

2900

3200

3500

3800

4100

4400

Va , [км/ч]

8,64

13,82

19,01

24,19

29,38

34,56

39,74

44,93

50,11

55,30

60,48

65,66

70,85

76,03

Nψ , [кВт]

3,34

5,37

7,45

9,59

11,80

14,10

16,51

19,05

21,72

24,55

27,55

30,73

34,13

37,74

Nw , [кВт]

0,04

0,15

0,39

0,80

1,43

2,34

3,55

5,13

7,12

9,56

12,51

16,02

20,12

24,86

(Nψ +Nw )/ηтр , [кВт]

3,73

6,11

8,67

11,49

14,64

18,18

22,19

26,74

31,90

37,73

44,32

51,72

60,00

69,25

Ne ', [кВт]

13,45

22,58

32,04

41,46

50,46

58,67

65,71

71,20

74,78

76,05

74,65

70,20

62,33

50,65

U

0,28

0,27

0,27

0,28

0,29

0,31

0,34

0,38

0,43

0,50

0,59

0,74

0,96

1,37

ge , [г/кВт∙ч]

324,5

301,2

283,4

271,1

264,4

263,1

267,3

277

292,2

313

339,2

370,9

408,1

450,9

Ku

2,06

2,09

2,09

2,06

2,00

1,91

1,79

1,64

1,46

1,25

1,03

0,86

0,96

2,26

GT , [кг/ч]

2,49

3,84

5,13

6,41

7,73

9,14

10,64

12,18

13,64

14,82

15,54

16,53

23,50

70,64

Qs ,[л/100км]

39,49

38,08

36,98

36,30

36,06

36,22

36,66

37,14

37,30

36,70

35,20

34,49

45,43

127,2

ne, [об/мин]

500

800

1100

1400

1700

2000

2300

2600

2900

3200

3500

3800

4100

4400

Va , [км/ч]

14,77

23,64

32,50

41,37

50,23

59,10

67,96

76,83

85,69

94,56

103,4

112,2

121,1

130

Nψ , [кВт]

5,75

9,36

13,18

17,29

21,78

26,73

32,21

38,31

45,11

52,68

61,12

70,49

80,88

92,37

Nw , [кВт]

0,18

0,75

1,94

4,00

7,17

11,68

17,76

25,65

35,60

47,82

62,58

80,09

100,5

124,3

(Nψ +Nw )/ηтр , [кВт]

6,30

10,73

16,06

22,63

30,76

40,80

53,09

67,96

85,75

106,7

131,4

159,9

192,8

230,2

Ne ', [кВт]

13,45

22,58

32,04

41,46

50,46

58,67

65,71

71,20

74,78

76,05

74,65

70,20

62,33

50,65

U

0,47

0,48

0,50

0,55

0,61

0,70

0,81

0,95

1,15

1,40

1,76

2,28

3,09

4,55

ge , [г/кВт∙ч]

324,5

301,2

283,4

271,1

264,4

263,1

267,3

277

292

313

339,2

370,9

408,1

450,9

Ku

1,33

1,31

1,24

1,13

1,01

0,89

0,84

0,95

1,37

2,45

4,92

10,51

24,10

62,89

GT , [кг/ч]

2,72

4,24

5,65

6,94

8,18

9,58

11,98

17,85

34,40

82,01

219,2

623,6

1896

6528

Qs ,[л/100км]

25,26

24,59

23,81

22,99

22,30

22,22

24,14

31,82

54,99

118,8

290,3

760,8

2144

6878

Значения путевого расхода топлива автомобиля ГАЗ - 3307 на 3,4 передачах при движении автомобиля по грунту

ne, [об/мин]

500

800

1100

1400

1700

2000

2300

2600

2900

3200

3500

3800

4100

4400

Va , [км/ч]

8,64

13,82

19,01

24,19

29,38

34,56

39,74

44,93

50,11

55,30

60,48

65,66

70,85

76,03

Nψ , [кВт]

5,57

8,96

12,42

15,98

19,67

23,50

27,52

31,74

36,20

40,91

45,91

51,22

56,88

62,90

Nw , [кВт]

0,04

0,15

0,39

0,80

1,43

2,34

3,55

5,13

7,12

9,56

12,51

16,02

20,12

24,86

(Nψ +Nw )/ηтр , [кВт]

6,20

10,07

14,17

18,56

23,34

28,58

34,37

40,79

47,92

55,84

64,63

74,38

85,17

97,08

Ne ', [кВт]

13,45

22,58

32,04

41,46

50,46

58,67

65,71

71,20

74,78

76,05

74,65

70,20

62,33

50,65

U

0,46

0,45

0,44

0,45

0,46

0,49

0,52

0,57

0,64

0,73

0,87

1,06

1,37

1,92

ge , [г/кВт∙ч]

324,5

301,2

283,4

271,1

264,4

263,1

267,3

277,0

292,2

313

339,2

370,9

408,1

450,9

Ku

1,36

1,40

1,41

1,40

1,35

1,28

1,19

1,07

0,96

0,86

0,86

1,14

2,26

6,35

GT , [кг/ч]

2,73

4,25

5,67

7,02

8,33

9,62

10,89

12,13

13,40

15,09

18,90

31,44

78,53

278

Qs ,[л/100км]

43,22

42,11

40,89

39,78

38,85

38,13

37,53

37,00

36,64

37,37

42,81

65,59

151,8

500,9

ne, [об/мин]

500

800

1100

1400

1700

2000

2300

2600

2900

3200

3500

3800

Va , [км/ч]

14,77

23,64

32,50

41,37

50,23

59,10

67,96

76,83

85,69

94,56

103,42

112,29

Nψ , [кВт]

9,58

15,59

21,96

28,82

36,30

44,55

53,69

63,85

75,18

87,81

101,86

117,48

Nw , [кВт]

0,18

0,75

1,94

4,00

7,17

11,68

17,76

25,65

35,60

47,82

62,58

80,09

(Nψ +Nw )/ηтр , [кВт]

10,38

17,36

25,40

34,87

46,19

59,74

75,91

95,10

117,70

144,11

174,71

209,91

Ne ', [кВт]

13,45

22,58

32,04

41,46

50,46

58,67

65,71

71,20

74,78

76,05

74,65

70,20

U

0,77

0,77

0,79

0,84

0,92

1,02

1,16

1,34

1,57

1,89

2,34

2,99

ge , [г/кВт∙ч]

324,55

301,26

283,47

271,19

264,40

263,12

267,33

277,05

292,28

313,00

339,23

370,95

Ku

0,85

0,85

0,84

0,85

0,90

1,05

1,40

2,11

3,49

6,14

11,33

22,05

GT , [кг/ч]

2,85

4,44

6,08

8,05

11,01

16,54

28,39

55,54

119,99

276,88

671,46

1716,8

Qs ,[л/100км]

26,46

25,71

25,60

26,64

30,02

38,34

57,21

99,04

191,81

401,11

889,38

2094,5

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений08:13:32 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
08:31:12 29 ноября 2015

Работы, похожие на Курсовая работа: Тяговый расчет автомобиля ГАЗ 3307
Тяговый и динамический расчет автомобиля ВАЗ-21093
Содержание Введение 1 Тяговый расчет автомобиля 1.1 Определение полной массы автомобиля 1.2 Распределение полной массы по мостам автомобиля 1.3 Подбор ...
3.3 Ускорение автомобиля при разгоне
В предположении отсутствия буксования сцепления и ведущих колес автомобиля связь между частотой вращения коленчатого вала двигателя ne и скоростью V находится из соотношения:
Раздел: Рефераты по транспорту
Тип: курсовая работа Просмотров: 8373 Комментариев: 1 Похожие работы
Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать
Тяговый и динамический расчет автомобиля ВАЗ-2105
Введение Данная курсовая работа предназначена для закрепления знаний студентов по дисциплинам "Теория движения автомобиля", "Автомобили" (ч, 2) и ...
В предположении отсутствия буксования сцепления и ведущих колес автомобиля связь между частотой вращения коленчатого вала двигателя ne и скоростью V находится из соотношения:
По характеристикам времени и пути разгона автомобиля t1600 = 58,8 с; tv = 64,5 c; Sv = 1826,082 м.
Раздел: Рефераты по транспорту
Тип: курсовая работа Просмотров: 4441 Комментариев: 2 Похожие работы
Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать
Синтез и анализ эксплуатационных параметров автомобиля
Введение Эксплуатационными свойствами автомобиля, определяющими приспособленность его конструкции к эффективному использовании в реальных условиях ...
При заданных модели автомобиля, скорости встречного или попутного ветра uw=0 м/с и коэффициенте сцепления колес с сухим шероховатым покрытием jос исходными данными для расчета и ...
Построение этих графиков по данным колонок uт и Dо в таблице 4 можно осуществлять в любой последовательности, но лучше начинать с номинальных значений (при Ne max), которые должны ...
Раздел: Рефераты по транспорту
Тип: курсовая работа Просмотров: 445 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Проектировочный расчет автомобиля ВАЗ-2108
Министерство образования и науки Российской Федерации Федеральное агентство по образованию ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра ...
На основании таблицы 4 строится динамическая характеристика автомобиля D=f (Va) для каждой передачи рисунок 4.
Путь разгона можно определить с помощью интегрирования кривой t=f (Va).
Раздел: Рефераты по транспорту
Тип: курсовая работа Просмотров: 1694 Комментариев: 3 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Легковая автомобильная промышленность России
Дипломная работа на тему " Содержание Л Введение 4 I История развития автомобильной промышленности России 5 I.1 Российская автомобильная ...
С 1991 по 1994 год количество легковых автомобилей в расчете на тысячу жителей России возросло с 57 до 74 штук.
Если говорить об автомобиле, который будет делаться в этих транснациональных компаниях, то стремление такое, что на одной платформе - основании с мотором и колесами - нужно ...
Раздел: Остальные рефераты
Тип: реферат Просмотров: 9379 Комментариев: 2 Похожие работы
Оценило: 3 человек Средний балл: 3.3 Оценка: неизвестно     Скачать
... изготовления дублирующего устройства управления учебным автомобилем
Министерство образования и науки Российской Федерации Тульский государственный педагогический университет им. Л. Н. Толстого Кафедра машиноведения и ...
... топлива, сгорающего в его цилиндрах, в тепловую энергию, а затем при помощи кривошипно-шатунного механизмав механическую, которая приводит во вращение ведущие колеса автомобиля.
Для этого после разгона до 20-30 км/ч резко затормаживают автомобиль с помощью ручного тормоза.
Раздел: Рефераты по транспорту
Тип: реферат Просмотров: 6477 Комментариев: 4 Похожие работы
Оценило: 4 человек Средний балл: 3.8 Оценка: неизвестно     Скачать
... диагностики, ремонта, технического обслуживания легковых автомобилей
... станция технического обслуживания для диагностики, ремонта, технического обслуживания легковых автомобилей. Выполнен анализ рынка сбыта легковых ...
Максимальная скорость такого автомобиля достигает 170 км/ч, а разгон до "сотни" занимает 14 секунд.
... объемом 1,5 л. мощностью 94 л.с., с двухвальной головкой цилиндров, обеспечивающий повышенные показатели по мощности (69 кВт) и крутящему моменту (130 Нм), позволяющими иметь ...
Раздел: Рефераты по транспорту
Тип: дипломная работа Просмотров: 19408 Комментариев: 2 Похожие работы
Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать

Все работы, похожие на Курсовая работа: Тяговый расчет автомобиля ГАЗ 3307 (13327)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150330)
Комментарии (1830)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru