Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Курсовая работа: Статистические методы обработки выборочных данных наблюдений или экспериментов

Название: Статистические методы обработки выборочных данных наблюдений или экспериментов
Раздел: Рефераты по экономике
Тип: курсовая работа Добавлен 11:08:23 20 мая 2009 Похожие работы
Просмотров: 87 Комментариев: 3 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ)

Институт транспортной техники и организации производства

(ИТТОП)

Кафедра: «Локомотивы и локомотивное хозяйство»

Курсовой проект

на тему:

«Статистические методы обработки выборочных данных наблюдений или экспериментов»

Выполнил: студент Краснов М.А.

группы ТЛТ-451

Принял: Пузанков А.Д.

Москва 2009


СОДЕРЖАНИЕ

1. ПЕРВИЧНЫЙ АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

2. ПОСТРОЕНИЕ ЭМПИРИЧЕСКОЙ ПЛОТНОСТИ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ АНАЛИЗИРУЕМОЙ ВЕЛИЧИНЫ И РАСЧЕТ ЕЕ ХАРАКТЕРИСТИК

3. ОПРЕДЕЛЕНИЕ ВИДА ЗАКОНА РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ И РАСЧЕТ ЕГО ПАРАМЕТРОВ ПРИ ПОМОЩИ МЕТОДА МОМЕНТОВ

4. ОПРЕДЕЛЕНИЕ ВИДА ТЕОРЕТИЧЕСКОГО ЗАКОНА РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ ГРАФИЧЕСКИМ МЕТОДОМ


1. Первичный анализ экспериментальных данных

Запишем полученные значения в вариационный ряд в возрастающем порядке:

Таблица 1.

16,4

21,6

35,46

38,76

39,84

40,65

44,25

46,73

47,62

50,25

50,25

51,02

51,8

55,22

55,25

55,55

61,73

63,3

64,93

67,56

68,5

68,5

71,94

73

73,53

73,53

74,07

77,52

78,12

78,74

78,74

80,64

85,47

86,2

87,72

90,1

92,6

94,34

95,24

96,15

99,01

99,01

106,4

108,6

116,28

133,3

135,13

137

144,93

149,25

153,84

161,3

166,7

172,4

172,4

175,44

178,6

178,6

185,18

192,3

208,33

212,76

227,27

232,56

238,1

243,9

256,41

277,8

277,8

285,7

285,71

285,71

322,6

322,6

344,83

370,4

370,4

370,4

384,6

420,6

526,3

555,55

588,23

943,4

xmax = 943,4; xmin = 16,4

Результат последних двух измерений вызывает сомнения. Поэтому выполняем проверку:

Величину выборочного среднего находим из соотношения:

(1)

Корень квадратный из дисперсии, взятый с положительным знаком, называется среднеквадратическим отклонением и рассчитывается по формуле:

(2)

Упрощённая проверка сомнительного результата на брак выполняется из условия:

Таким образом, по упрощенной проверке результат сомнительного измерения браком являются последнее одно значение, отбрасываем их и пересчитываем и :

Проверяем по упрощённой проверки:

Таким образом, по упрощенной проверке результат сомнительного измерения браком являются последние два значения, отбрасываем их и пересчитываем и :

Таким образом, по упрощенной проверке результат сомнительного измерения браком являются последнее одно значение, отбрасываем их и пересчитываем и :

Таким образом, по упрощенной проверке результат сомнительного измерения не является браком.

Так же выполним подобную проверку с помощью критерия Ирвина:

Таким образом, по расчётам обеих проверок результат последнего сомнительного измерения не является браком.

Из этого следует, что нужно произвести повторный расчёт, но уже без данного измерения:

2. Построение эмпирической плотности распределения случайной анализируемой величины и расчёт её характеристик

Определяем размах имеющихся данных, т.е. разности между наибольшим и наименьшим выборочным значениями (R = Xmax – Xmin):

Выбор числа интервалов группировки k при числе наблюдений n<100 – ориентировочное значение интервалов можно рассчитать с использованием формулы Хайнхольда и Гаеде:

Тогда ширина интервала:


Результат подсчёта частот и характеристик эмпирического распределения

Таблица 2.

Границы интервала

группировки

Ср.знач.

интерв.

Распределение

данных

fi

U

U*f

U^2*f

16,4…61,31

38,86

////////////////

16

-1

-16

16

61,31…106,22

83,77

//////////////////////////

26

0

0

0

106,22…151,13

128,68

////////

8

1

8

8

151,13…196,04

173,59

//////////

10

2

20

40

196,04…240,96

218,50

/////

5

3

15

45

240,96…285,87

263,41

/////

5

4

20

80

285,87…330,78

308,32

////

4

5

20

100

330,78…375,69

353,23

////

4

6

24

144

375,69…420,60

398,14

//

2

7

14

98

ИТОГО

80

105

531

Принимаем «ложный нуль» x0 =83,77 и обозначаем нулем тот интервал, которому соответствует максимальная частота (f=26). Далее, для интервалов, следующих к наименьшему наблюдаемому значению вписываем -1, -2 … и 1, 2, … для интервалов, следующих к наибольшему значению наблюдаемой величины.

Выборочное среднее х и среднеквадратическое отклонение Sx рассчитываем, используя следующие выражения:

(3)


Для построения гистограммы, приведённой на рис.1, по оси абсцисс в выбранном масштабе отмечаем границы интервалов. Левая ось размечается масштабом частот, а на правую, в случае необходимости, можно нанести шкалу относительных частот. На чистом поле гистограммы указываются значения: числа данных; среднего арифметического; среднеквадратического отклонения.

Рис.1

Помимо гистограммы эмпирические данные измерений случайной величины могут быть представлены в виде кумулятивной кривой функции распределения вероятностей. Для этого данные, представленные в табл.1., должны быть дополнены частостями (см. табл.2.).

Частость находим из соотношения:

Таблица частот f и частостей ω.

Таблица 3.

Границы интервала

группировки

Частота,fi

Частость,

ω i

Накопленная

частость, ω н

16,4…61,31

16

0,20

0,20

61,31…106,22

26

0,33

0,53

106,22…151,13

8

0,10

0,63

151,13…196,04

10

0,13

0,75

196,04…240,96

5

0,06

0,81

240,96…285,87

5

0,06

0,88

285,87…330,78

4

0,05

0,93

330,78…375,69

4

0,05

0,98

375,69…420,60

2

0,03

1,00

ИТОГО

80

1

Рис. 2


3. Определение вида закона распределения случайной величины и расчёт его параметров при помощи метода моментов

Экспоненциальный (нормальный) закон распределения

Параметр закона распределения:

Таблица 4

xi

103 км

fi

шт

λ*xi

e-λ*xi

φ(xi)

10-6

fi’

шт

1

38,86

16

0,270

0,763

0,531

19,08

0,50

2

83,77

26

0,583

0,558

0,388

13,96

10,39

3

128,68

8

0,895

0,408

0,284

10,21

0,48

4

173,59

10

1,208

0,299

0,208

7,47

0,86

5

218,50

5

1,520

0,219

0,152

5,47

0,04

6

263,41

5

1,833

0,160

0,111

4,00

0,25

7

308,32

4

2,145

0,117

0,081

2,93

0,39

8

353,23

4

2,458

0,086

0,060

2,14

1,62

9

398,14

2

2,770

0,063

0,044

1,57

0,12

ИТОГО:

80

14,64

Рис. 4


Нормальный закон распределения двухпараметрический, число степеней свободы υ = 7 и = 14,067.

Так как χ2 > χ0,05 2 , то гипотеза о принадлежности эмпирической выборки значений, экспоненциальному закону распределения отвергается

Распределение Вейбулла - Гнеденко

Величина выборочного коэффициента вариации:

По данным приложения таблица П1,2:

Таблица 5

Xi

103 км

fi

шт

xi/a

a* φ(xi)

φ(xi)

10-6

fi’

шт

1

38,86

16

0,246

0,6944

4,4017

15,81

0,00

2

83,77

26

0,531

0,7197

4,5618

16,39

5,63

3

128,68

8

0,816

0,6085

3,8567

13,86

2,48

4

173,59

10

1,100

0,4637

2,9393

10,56

0,03

5

218,50

5

1,385

0,3293

2,0870

7,50

0,83

6

263,41

5

1,670

0,2213

1,4029

5,04

0,00

7

308,32

4

1,954

0,1422

0,9014

3,24

0,18

8

353,23

4

2,239

0,0879

0,5570

2,00

2,00

9

398,14

2

2,524

0,0525

0,3325

1,19

0,54

ИТОГО:

80

75,60

11,69


Рис. 5

Нормальный закон распределения двухпараметрический, число степеней свободы υ = 6 и = 12,592.

Так как χ2 > χ0,05 2 , то эмпирическая выборка значений пренадлежит закону распределения Вейбулла - Гнеденко

Нормальный (Гауссовский) закон распределения

Таблица 6

Xi

103 км

fi

ti

φ(ti)

10-2

φ(xi)

fi’

щт

1

38,86

16

-1,025

0,231

0,101

8,09

7,72

2

83,77

26

-0,586

0,328

0,144

11,52

18,18

3

128,68

8

-0,147

0,386

0,169

13,53

2,26

4

173,59

10

0,292

0,374

0,164

13,11

0,74

5

218,50

5

0,731

0,298

0,131

10,48

2,86

6

263,41

5

1,169

0,197

0,086

6,91

0,53

7

308,32

4

1,608

0,107

0,047

3,75

0,02

8

353,23

4

2,047

0,048

0,021

1,68

3,18

9

398,14

2

2,486

0,018

0,008

0,62

3,04

ИТОГО:

80

69,71

38,54


Рис. 6

Нормальный закон распределения двухпараметрический, число степеней свободы υ = 6 и = 12.592.

Так как χ2 > χ0,05 2 , то гипотеза о принадлежности эмпирической выборки значений, нормальному (Гауссовскому) закону распределения отвергается

Логарифмически - нормальный закон распределения

Значения средне-выборочное и средне-квадратичное:

Таблица 7

Xi

103 км

fi

ti

φ(ti)

φ(xi)

fi’

щт

1

38,86

16

-1,481

0,133

4,808

17,28

0,094

2

83,77

26

-0,404

0,367

6,155

22,12

0,682

3

128,68

8

0,198

0,391

4,263

15,32

3,494

4

173,59

10

0,618

0,329

2,663

9,57

0,019

5

218,50

5

0,941

0,256

1,645

5,91

0,140

6

263,41

5

1,203

0,193

1,030

3,70

0,455

7

308,32

4

1,423

0,144

0,659

2,37

1,126

8

353,23

4

1,614

0,108

0,430

1,55

3,892

9

398,14

2

1,782

0,081

0,287

1,03

0,908

ИТОГО:

80

10,81

Рис. 7

Нормальный закон распределения двухпараметрический, число степеней свободы υ = 6 и = 12.592.

Так как χ2 < χ0,05 2 , то эмпирическая выборка значений принадлежит логарифмически-нормальному закону распределения

4. Определение вида теоретического закона распределения случайной величины графическими методами

Расчёт координат эмпирических точек заданной выборки


Таблица 8.

№ п/п

Среднее значение

интервала xi , 103 км

fi , шт

Σ fi

F(x)= Σ fi /n+1

1

38,86

16

16

0,198

2

83,77

26

42

0,519

3

128,68

8

50

0,617

4

173,59

10

60

0,741

5

218,50

5

65

0,802

6

263,41

5

70

0,864

7

308,32

4

74

0,914

8

353,23

4

78

0,963

9

398,14

2

80

0,988

Используя полученные в табл.4. данные, строим вероятностную сетку и выполняем проверку согласованности.

Выбор масштаба построения вероятностной сетки:

· ширина графика (ось абсцисс) А = 140 мм ;

· высота графика (ось ординат) Н = 180 мм .

Нормальный закон распределения

Масштаб значений оси абсцисс устанавливается на основе выражения:

Таблица 9

P = F(x)

0,5

0,6

0,7

0,8

0,8413

0,85

0,903

y = Q-1 (P)

0

0,25

0,52

0,85

1

1,05

1,3

Ky (P), мм

0

7,5

15,6

25,5

30

31,5

39

P = F(x)

0,96

0,971

0,98

0,991

0,9953

0,997

0,9987

y = Q-1 (P)

1,75

1,9

2,05

2,35

2,6

2,75

3

Ky(P), мм

52,5

57

61,5

70,5

78

82,5

90


Лгарифмически - нормальный закон распределения

Масштаб значений оси абсцисс устанавливается на основе выражения:


Таблица 10

Границы интервала

xi

103 км

1

418,78…475,69

38,86

456,01

0,198

2

475,69…499,40

83,77

489,15

0,519

3

499,40…514,62

128,68

507,68

0,617

4

514,62…525,85

173,59

520,60

0,741

5

525,85…534,75

218,50

530,52

0,802

6

534,75…542,12

263,41

538,59

0,864

7

542,12…548,42

308,32

545,38

0,914

8

548,42…553,91

353,23

551,25

0,963

9

553,91…558,78

398,14

556,42

0,988


Экспоненциальный (нормальный) закон распределения

Таблица 11

P = F(x)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Ky (P), мм

0,0

3,2

6,7

10,7

15,3

20,8

27,5

36,1

P = F(x)

0,8

0,9

0,95

0,97

0,98

0,99

0,995

0,9975

Ky(P), мм

48,3

69,1

89,9

105,2

117,4

138,2

158,9

179,7


Распределение Вейбулла – Гнеденко

Таблица 12

P = F(x)

0,03

0,04

0,06

0,1

0,2

0,3

0,4

y = Q-1 (P)

-3,5

-3,2

-2,8

-2,25

-1,5

-1,03

-0,7

Ky (P), мм

-118,8

-108,6

-95,0

-76,4

-50,9

-35,0

-23,8

P = F(x)

0,5

0,632

0,78

0,9

0,97

0,955

0,999

y = Q-1 (P)

-0,36

0,00

0,41

0,83

1,25

1,66

1,93

Ky(P), мм

-12,2

0,00

13,9

28,2

42,4

56,3

65,5


Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений08:05:12 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
18:27:58 29 ноября 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
08:25:48 29 ноября 2015

Работы, похожие на Курсовая работа: Статистические методы обработки выборочных данных наблюдений или экспериментов

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151281)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru