Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Методика построения уравнения регрессии и корреляции

Название: Методика построения уравнения регрессии и корреляции
Раздел: Рефераты по экономике
Тип: контрольная работа Добавлен 13:56:37 28 января 2009 Похожие работы
Просмотров: 59 Комментариев: 3 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Контрольная работа №2

Задача №1

Для изучения связи между активами-нетто и объемом капитала по 30 коммерческим банкам (согласно Вашему варианту):

а) изобразите связь между изучаемыми признаками графически построением поля корреляции;

б) постройте уравнение регрессии. Параметры уравнения определите методом наименьших квадратов. Рассчитайте теоретические значения объема кредитных вложений и нанесите их на построенный график.

Решение:

Рисунок 1

Расчетная таблица для определения параметров уравнения регрессии зависимости чистых активов и капитала коммерческих банков.

Таблица 1.1

№ банка

Капитал, млн.руб. (X)

Чистые активы, млн.руб. (Y)

X*Y

Yx

1

2

3

4

5

6

7

1

1,46

1,68

2,13

2,82

2,45

232,1

2

1,51

2,81

2,28

7,9

4,24

240,4

3

2,63

21,84

6,92

476,9

57,44

422,0

4

1,72

7,38

2,96

54,46

12,7

264,8

5

1,50

9,82

2,25

96,43

14,73

240,1

6

1,64

4,26

2,69

18,15

6,99

258,2

7

1,36

4,61

1,85

21,25

6,27

228,4

8

1,21

3,32

1,46

11,02

4,02

219,6

9

1,49

2,33

2,22

5,43

3,47

234,9

10

1,35

3,08

1,82

9,49

4,16

227,6

11

1,61

15,14

2,59

229,2

24,37

254,8

12

1,78

7,12

3,17

50,7

12,67

266,1

13

1,42

1,68

2,01

2,82

2,38

229,7

14

1,41

4,60

1,99

21,16

6,49

229,2

15

1,46

2,20

2,13

4,84

3,21

232,1

16

3,65

20,21

13,32

408,4

73,77

587,4

17

1,57

7,74

2,46

59,9

12,15

252,1

18

1,10

2,72

1,21

7,4

2,99

173,8

19

0,94

1,59

0,88

2,53

1,49

151,9

20

3,89

22,37

15,13

500,42

87,02

598,4

21

0,78

1,42

0,61

2,02

1,11

121,9

22

2,74

12,61

7,51

159,01

34,55

439,8

23

0,87

10,26

0,76

105,27

8,93

136,6

24

1,08

6,12

1,17

37,45

6,61

169,9

25

1,08

5,27

1,17

27,8

5,69

169,9

26

2,90

7,33

8,41

53,73

21,26

465,8

1

2

3

4

5

6

7

27

1,13

6,30

1,28

39,69

7,12

178,7

28

0.94

22,67

0,88

513,93

21,31

151,9

29

1.92

3,42

3,69

11,7

6,57

306,8

ИТОГО

48,14

221,9

96,95

2941,81

456,16

7684,9

Система нормальных уравнений для нахождения параметров парной регрессии методом наименьших квадратов имеет следующий вид:

а0 = (221,9 – 48,14а1)/29

48,14*((221,9 – 48,14а1)/29)+ 96,95а1 = 456,16

368,354 – 79,912а1 + 96,95а1 = 456,16

17,037а1 = 87,806

а1 = 5,154

а0 = (221,9 – 48,14*5,154)/29 = -0,9

Yx = а0 + а1*х = 5,154х - 0,9

Задача №2

По данным задачи 1 вычислите показатели тесноты связи между изучаемыми признаками. В случае линейной связи для оценки тесноты связи необходимо применить формулу линейного коэффициента корреляции, при нелинейной связи – теоретического корреляционного отношения.

Сделайте выводы о тесноте и направлении связи между изучаемыми признаками.

Решение

Линейный коэффициент корреляции рассчитывается по формуле:

σх = √х² - (х)²

σу = √у² - (у)²

х² = ∑ х²/29 = 96,95/29 = 3,34

(х)² = (∑ х/29)² = (48,14/29)² = 2,756

у² = ∑ у²/29 = 2941,81/29 = 101,441

(у)² = (∑ у/29)² = (221,9/29) ² = 58,549

X = ∑ х/29 = 48,14/29 = 1,66

Y = ∑ у/29 = 221,9/29 = 7,65

XY = ∑х*у/29 = 456,16/29 = 15,73

σх =√3,34 – 2,756 = 0,764

σу = √101,441 – 58,549 = 6,55

Задача №3

По данным любого статистического ежегодника или периодической печати выполните следующее:

1. Выберите интервальный ряд динамики, состоящий из 8-10 уровней.

2. Изобразите графически динамику ряда с помощью статистической кривой.

3. По данным выбранного ряда вычислите абсолютные и относительные показатели динамики. Результаты расчетов изложите в табличной форме.

4. Вычислите средние показатели динамики.

Решение

1. Выберем интервальный ряд динамики, состоящий из восьми уровней и отразим его в таблице 3.1

Таблица 3.1. Среднемесячное потребление горячей воды в течение 8-ми месяцев, куб.м.

Месяц

1

2

3

4

5

6

7

8

куб.м.

10,5

9,8

7,4

9,6

10,9

9,2

13,7

11,3

Рассмотрим динамический ряд потребления горячей воды в таблице 3.2

Таблица 3.2. Динамика потребления горячей воды за 8 месяцев

Месяц

Потребление, куб.м.(уi)

Абсолютные приросты, куб.м.

Темпы роста, %

Темпы прироста, %

Абсолютное значение 1% прироста, куб.м.

цепные

базисные

цепные

базисные

цепные

базисные

1

10,5

-

-

-

100

-

-

-

2

9,8

-0,7

-0,7

93,3

93,3

-6,7

-6,7

0,105

3

7,4

-2,4

-3,1

75,5

70,5

-24,5

-29,5

0,098

4

9,6

2,2

-0,9

129,7

91,4

29,7

-8,6

0,074

5

10,9

1,3

0,4

113,5

103,8

13,5

3,8

0,096

6

9,2

-1,7

-1,3

84,4

87,6

-15,6

-12,4

0,109

7

13,7

4,5

3,2

148,9

130,5

48,9

30,5

0,092

8

11,3

-2,4

0,8

82,5

107,6

-17,5

7,6

0,137

Итого

82,4

0,8

-

-

-

-

-

-

2. Изобразим графически динамику ряда с помощью статистической кривой.

Рисунок 2. Динамика ряда в виде статистической кривой

3. По данным выбранного ряда вычислим абсолютные и относительные показатели динамики.

Средний абсолютный прирост:

,

или

Средний темп роста:

,

или

Средний темп прироста:

Средний уровень интервального ряда определяется по формуле средней арифметической:

Средний уровень моментального ряда определяется по формуле:

Согласно произведенным вычислениям можно сделать следующие выводы:

Наибольшее потребление горячей воды было в 7-ом месяце, а наименьшее в 3-ем месяце. Среднее потребление горячей воды 10,3 куб.м.

Задача №4

По данным задачи 3 произведите сглаживание изучаемого ряда динамики с помощью скользящей средней и аналитического выравнивания. Расчетные уровни нанесите на построенный ранее график.

Сделайте выводы о характере тенденции рассмотренного ряда динамики.

Решение

1. Сглаживание ряда динамики с помощью скользящей средней заключается в том, что вычисляется средний уровень от определенного числа первых по порядку уровней ряда, затем средний уровень из такого же числа уровней, начиная со второго и т.д.

Расчет скользящей средней по данным о потреблении горячей воды за восемь месяцев приведен в таблице 4.1.

Таблица 4.1. Сглаживание потребления горячей воды за восемь месяцев методом скользящей средней

Месяцы

Потребление горячей воды, куб.м.

Скользящая

средняя

трехмесячная

пятимесячная

1

10,5

2

9,8

(10,5+9,8+7,4)/3=9,2

3

7,4

(9,8+7,4+9,6)/3=8,9

(10,5+9,8+7,4+9,6+10,9)/5=9,6

4

9,6

(7,4+9,6+10,9)/3=9,3

(9,8+7,4+9,6+10,9+9,2)/5=9,4

5

10,9

(9,6+10,9+9,2)/3=9,9

(7,4+9,6+10,9+9,2+13,7)/5=10,2

6

9,2

(10,9+9,2+13,7)/3=11,3

(9,6+10,9+9,2+13,7+11,3)/5=10,9

7

13,7

(9,2+13,7+11,3)/3=11,4

8

11,3

2. Аналитическое выравнивание ряда динамики уровни ряда представляются как функции времени:

При использовании уравнения прямой

Параметры вычисляются по следующим формулам:

Таблица 4.2. Выравнивание по прямой ряда динамики потребления горячей воды отражено в таблице 4.2

Месяцы

Потребление горячей воды, куб.м. (у i )

t

t ²

y i t

y t

( y i - y t i ) ²

1

10,5

-4

16

-42,0

8,98

2,31

2

9,8

-3

9

-29,4

9,31

0,24

3

7,4

-2

4

-14,8

9,64

5,02

4

9,6

-1

1

-9,6

9,97

0,14

5

10,9

1

1

10,9

10,63

0,07

6

9,2

2

4

18,4

10,96

3,1

7

13,7

3

9

41,1

11,29

5,8

8

11,3

4

16

45,2

11,62

0,1

Сумма

82,4

0

60

19,8

82,4

16,78

а0 = 82,4/8 = 10,3 куб.м.

а1 = 19,8/60 = 0,33 куб.м.

Уравнение прямой, представляющее собой трендовую модель искомой функции, будет иметь вид:

Yt = 10,3 + 0,33t

Полученное уравнение показывает что, несмотря на колебания в отдельные месяцы, наблюдается тенденция увеличения потребления горячей воды.

Потребление горячей воды в среднем возрастало на 0,33 куб.м. в месяц.

Рисунок 3. Динамика ряда потребления горячей воды с фактическими и выровненными данными

Задача №5.

По данным варианта следующее:

1) индивидуальные и общие (агрегатные) индексы цен;

2) индексы цен в среднегармонической форме;

3) сводные индексы физического объема проданных товаров;

4) сводные индексы товарооборота двумя способами;

а) по формуле индекса товарооборота в текущих ценах;

б) на основе ранее рассчитанных индексов цен и физического объема товарооборота.

Таблица 5.1

№ п/п

Продукт

Базисный период

Отчетный период

Расчетные графы

Кол-во реализованных единиц, шт., q0

Цена за единицу,

Руб., P0

Q, шт., q1

P1,

руб,

P1

P1*q1

P0*q1

P 1 * q 1

i

P0*q0

1

Б

175

120

180

135

24300

21600

21504

21000

2

В

400

50

360

42

15120

18000

18000

20000

3

Г

150

115

89

126

11214

10235

10195

17250

3

-

-

-

-

50634

49835

49699

58250

1. Индивидуальные и общие индексы цен рассчитываются по формуле:

,

где - соответственно цены отчетного и базисного периодов.

(+12,5%)

(-16%)

(+9,6%)

Общий (сводный) индекс цен имеет следующий вид:

,

где q1 - количество проданных товаров в отчетном периоде.

Цены в отчетном периоде по сравнению с базисным возросли на 1,6%.

2. Среднегармонический индекс тождествен агрегатному и вычисляется по следующей формуле:

3. Сводные индексы физического объема проданных товаров:

Физический объем проданных товаров в отчетном периоде по сравнению с базисным снизился на 14,4%.

4. Сводные индексы товарооборота:

а) по формуле индекса товарооборота в текущих ценах:

б) на основе ранее рассчитанных индексов цен и физического объема товарооборота:

Ipq = Ip Iq = 1,016*0,856 = 0,869

Товарооборот в отчетном периоде по сравнению с базисным сократился на 13,1%.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений08:00:33 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
20:15:06 29 ноября 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
08:23:01 29 ноября 2015

Работы, похожие на Контрольная работа: Методика построения уравнения регрессии и корреляции

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150974)
Комментарии (1842)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru