Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Лабораторная работа: Линейное уравнение регрессии

Название: Линейное уравнение регрессии
Раздел: Рефераты по экономике
Тип: лабораторная работа Добавлен 19:13:39 06 апреля 2010 Похожие работы
Просмотров: 104 Комментариев: 4 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Всероссийский заочный финансово-экономический институт

Лабораторная работа

по дисциплине "Эконометрика"

Брянск 2010


Задание

В таблице 1 представлены данные о рынке строящегося жилья в Санкт-Петербурге (по состоянию на декабрь 1996г.).

Таблица 1 – Исходные данные

№ п/п

Х1

Х2

Х3

Х4

Х5

Х6

Х7

Х8

У

1

1

1

39

20

8,2

0

1

0

15,9

2

3

1

68,4

40,5

10,7

0

1

0

27

3

1

1

34,8

16

10,7

0

1

12

13,5

4

1

1

39

20

8,5

0

1

12

15,1

5

2

1

54,7

28

10,7

0

1

12

21,1

6

3

1

74,7

46,3

10,7

0

1

12

28,7

7

3

1

71,7

45,9

10,7

0

0

0

27,2

8

3

1

74,5

47,5

10,4

0

0

0

28,3

9

4

1

137,7

87,2

14,6

0

1

0

52,3

10

1

1

40

17,7

11

1

1

8

22

11

2

1

53

31,1

10

1

1

8

28

12

3

1

86

48,7

14

1

1

8

45

13

4

1

98

65,8

13

1

1

8

51

14

2

1

62,6

21,4

11

1

1

0

34,4

15

1

1

45,3

20,6

10,4

1

1

8

24,7

16

2

1

56,4

29,7

9,4

1

1

8

30,8

17

1

1

37

17,8

8,3

0

1

0

15,9

18

3

1

67,5

43,5

8,3

0

1

0

29

19

1

1

37

17,8

8,3

0

1

3

15,4

20

3

1

69

42,4

8,3

0

1

3

28,6

21

1

1

40

20

8,3

0

0

0

15,6

22

3

1

69,1

41,3

8,3

0

1

0

27,7

23

2

1

38,1

35,4

13

1

1

20

34,1

24

2

1

75,3

41,4

12,1

1

1

20

37,7

25

3

1

83,7

48,5

12,1

1

1

20

41,9

26

1

1

48,7

22,3

12,4

1

1

20

24,4

27

1

1

39,9

18

8,1

1

0

0

21,3

28

2

1

68,6

35,5

17

1

1

12

36,7

29

1

1

39

20

9,2

1

0

0

21,5

30

2

1

48,6

31

8

1

0

0

26,4

31

3

1

98

56

22

1

0

0

53,9

32

2

1

68,5

30,7

8,3

1

1

6

34,2

33

2

1

71,1

36,2

13,3

1

1

6

35,6

34

3

1

68

41

8

1

1

12

34

35

1

1

38

19

7,4

1

1

12

19

36

2

1

93,2

49,5

14

1

1

12

46,6

37

3

1

117

55,2

25

1

1

12

58,5

38

1

2

42

21

10,2

1

0

12

24,2

39

2

2

62

35

11

1

0

12

35,7

40

3

2

89

52,3

11,5

1

1

12

51,2

41

4

2

132

89,6

11

1

1

12

75,9

42

1

2

40,8

19,2

10,1

1

1

6

21,2

43

2

2

59,2

31,9

11,2

1

1

6

30,8

44

3

2

65,4

38,9

9,3

1

1

6

34

45

2

2

60,2

36,3

10,9

1

1

12

31,9

46

3

2

82,2

49,7

13,8

1

1

12

43,6

47

3

2

98,4

52,3

15,3

1

1

12

52,2

48

3

3

76,7

44,7

8

1

1

0

43,1

49

1

3

38,7

20

10,2

1

1

6

25

50

2

3

56,4

32,7

10,1

1

1

6

35,2

51

3

3

76,7

44,7

8

1

1

6

40,8

52

1

3

38,7

20

10,2

1

0

0

18,2

53

1

3

41,5

20

10,2

1

1

0

20,1

54

2

3

48,8

28,5

8

1

0

0

22,7

55

2

3

57,4

33,5

10,1

1

1

0

27,6

56

3

3

76,7

44,7

8

1

1

0

36

57

1

4

37

17,5

8,3

0

1

7

17,8

58

2

4

54

30,5

8,3

0

1

7

25,9

59

3

4

68

42,5

8,3

0

1

7

32,6

60

1

4

40,5

16

11

0

1

3

19,8

61

2

4

61

31

11

0

1

3

29,9

62

3

4

80

45,6

11

0

1

3

39,2

63

1

3

52

21,2

11,2

1

1

18

22,4

64

2

3

78,1

40

11,6

1

1

18

35,2

65

3

3

91,6

53,8

16

1

0

18

41,2

66

1

4

39,9

19,3

8,4

0

1

6

17,8

67

2

4

56,2

31,4

11,1

0

1

6

25

68

3

4

79,1

42,4

15,5

0

1

6

35,2

69

4

4

91,6

55,2

9,4

0

1

6

40,8

Принятые в таблице обозначения:

Y – цена квартиры, тыс.долл.;

Х1 – число комнат в квартире;

Х2 – район города (1 – Приморский, Шувалово-Озерки, 2 – Гражданка, 3 – Юго-запад, 4 - Красносельский);

Х3 – общая площадь квартиры (м2 );

Х4 – жилая площадь квартиры (м2 );

Х5 – площадь кухни (м2 );

Х6 – тип дома (1 – кирпичный, 0 - другой);

Х7 – наличие балкона (1 – есть, 0 - нет);

Х8 – число месяцев до окончания срока строительства.

1) Введите фиктивную переменную z, отражающую местоположение квартиры и позволяющую разделить всю совокупность квартир на две группы: квартиры на севере города (Приморский район, Шувалово-Озерки, Гражданка) и на юге города (Юго-запад, Красносельский район).

2) Составьте матрицу парных коэффициентов корреляции исходных переменных. Вместо переменной х2 используйте фиктивную переменную z.

3) Постройте уравнение регрессии, характеризующее зависимость цены от всех факторов в линейной форме. Установите, какие факторы мультиколлинеарны.

4) Постройте модель у = f(х3 , х6 , х7 , х8 , z) в линейной форме. Какие факторы значимо воздействуют на формирование цены квартиры в этой модели?

5) Существует ли разница в ценах на квартиры, расположенных в северной и южной частях Санкт-Петербурга?

6) Оцените статистическую значимость параметров регрессионной модели с помощью t-критерия Стьюдента; нулевую гипотезу о значимости уравнения регрессии проверьте с помощью F-критерия Фишера; оцените качество уравнения регрессии с помощью коэффициента детерминации R2 .


Решение

1) Введем фиктивную переменную Z вместо Х2, отражающую местоположение квартиры и позволяющую разделить всю совокупность квартир на две группы. Первые 47 квартир относятся к северной части города (Приморский район, Шувалово-Озерки, Гражданка), а оставшиеся 22 квартиры относятся к южной части города (Юго-запад, Красносельский район). Составим матрицу парных коэффициентов корреляции исходных переменных.

Х1

Z

Х3

Х4

Х5

Х6

Х7

Х8

У

1

1

39

20

8,2

0

1

0

15,9

3

1

68,4

40,5

10,7

0

1

0

27

1

1

34,8

16

10,7

0

1

12

13,5

1

1

39

20

8,5

0

1

12

15,1

2

1

54,7

28

10,7

0

1

12

21,1

3

1

74,7

46,3

10,7

0

1

12

28,7

3

1

71,7

45,9

10,7

0

0

0

27,2

3

1

74,5

47,5

10,4

0

0

0

28,3

4

1

137,7

87,2

14,6

0

1

0

52,3

1

1

40

17,7

11

1

1

8

22

2

1

53

31,1

10

1

1

8

28

3

1

86

48,7

14

1

1

8

45

4

1

98

65,8

13

1

1

8

51

2

1

62,6

21,4

11

1

1

0

34,4

1

1

45,3

20,6

10,4

1

1

8

24,7

2

1

56,4

29,7

9,4

1

1

8

30,8

1

1

37

17,8

8,3

0

1

0

15,9

3

1

67,5

43,5

8,3

0

1

0

29

1

1

37

17,8

8,3

0

1

3

15,4

3

1

69

42,4

8,3

0

1

3

28,6

1

1

40

20

8,3

0

0

0

15,6

3

1

69,1

41,3

8,3

0

1

0

27,7

2

1

38,1

35,4

13

1

1

20

34,1

2

1

75,3

41,4

12,1

1

1

20

37,7

3

1

83,7

48,5

12,1

1

1

20

41,9

1

1

48,7

22,3

12,4

1

1

20

24,4

1

1

39,9

18

8,1

1

0

0

21,3

2

1

68,6

35,5

17

1

1

12

36,7

1

1

39

20

9,2

1

0

0

21,5

2

1

48,6

31

8

1

0

0

26,4

3

1

98

56

22

1

0

0

53,9

2

1

68,5

30,7

8,3

1

1

6

34,2

2

1

71,1

36,2

13,3

1

1

6

35,6

3

1

68

41

8

1

1

12

34

1

1

38

19

7,4

1

1

12

19

2

1

93,2

49,5

14

1

1

12

46,6

3

1

117

55,2

25

1

1

12

58,5

1

1

42

21

10,2

1

0

12

24,2

2

1

62

35

11

1

0

12

35,7

3

1

89

52,3

11,5

1

1

12

51,2

4

1

132

89,6

11

1

1

12

75,9

1

1

40,8

19,2

10,1

1

1

6

21,2

2

1

59,2

31,9

11,2

1

1

6

30,8

3

1

65,4

38,9

9,3

1

1

6

34

2

1

60,2

36,3

10,9

1

1

12

31,9

3

1

82,2

49,7

13,8

1

1

12

43,6

3

1

98,4

52,3

15,3

1

1

12

52,2

3

0

76,7

44,7

8

1

1

0

43,1

1

0

38,7

20

10,2

1

1

6

25

2

0

56,4

32,7

10,1

1

1

6

35,2

3

0

76,7

44,7

8

1

1

6

40,8

1

0

38,7

20

10,2

1

0

0

18,2

1

0

41,5

20

10,2

1

1

0

20,1

2

0

48,8

28,5

8

1

0

0

22,7

2

0

57,4

33,5

10,1

1

1

0

27,6

3

0

76,7

44,7

8

1

1

0

36

1

0

37

17,5

8,3

0

1

7

17,8

2

0

54

30,5

8,3

0

1

7

25,9

3

0

68

42,5

8,3

0

1

7

32,6

1

0

40,5

16

11

0

1

3

19,8

2

0

61

31

11

0

1

3

29,9

3

0

80

45,6

11

0

1

3

39,2

1

0

52

21,2

11,2

1

1

18

22,4

2

0

78,1

40

11,6

1

1

18

35,2

3

0

91,6

53,8

16

1

0

18

41,2

1

0

39,9

19,3

8,4

0

1

6

17,8

2

0

56,2

31,4

11,1

0

1

6

25

3

0

79,1

42,4

15,5

0

1

6

35,2

4

0

91,6

55,2

9,4

0

1

6

40,8

2) Проведем корреляционный анализ на выявление зависимости Y от представленных факторов в среде "СтатЭксперт".

Протокол корреляционного анализа

Главная цель анализа данных состоит в выявлении корреляционной связи зависимой переменной Y с независимыми переменными Хi , а также выявление независимых переменных, имеющих высокий уровень корреляции между собой.

Критическое значение коэффициента корреляции rкр = 0,2002. Это означает, что все коэффициенты корреляции, значения которых меньше rкр принимаются равными нулю, а связь между этими параметрами считается незначимой.

Влияние независимой переменной Х3 , Х4 , включенной в исследование, имеет высокий уровень (r > 0,7), причем это влияние положительно (rух3 = 0,872, rух4 = 0,917).

Х5 оказывает умеренное положительное влияние на величину Y (rух5 = 0,303).

Х1 , Х2 , Х6 , Х7 , Х8 не оказывают влияния на величину Y (rух2 = 0,010, rух6 = = -0,104, rух7 = 0,119, rух8 = -0,005).

3) Построим уравнение регрессии, характеризующее зависимость цены от всех факторов, в линейной форме.

Линейная регрессия

Уравнение будет иметь вид:

у(х) = -0,505 – 0,966х1 + 0,824х2 + 0,390х3 + 0,191х4 + 0,091х5 + 5,835х6 + 1,244х7 – 0,011х8

Линейная или близкая к ней связь между факторами называется мультиколлинеарностью. Считают явление мультиколлинеарности в исходных данных установленным, если коэффициент парной корреляции между двумя переменными больше 0,7.

Рассмотрим матрицу парных коэффициентов корреляции между факторами Хj , включенными в дальнейшем анализ.


Матрица парных корреляций

Явление сильной коллинеарности наблюдается между факторами:

Х1 и Х3 , т.к. rх1х3 = 0,872 > 0,7

Х1 и Х4 , т.к. rх1х4 = 0,917 > 0,7

Х3 и Х4 , т.к. rх3х4 = 0,966 > 0,7

4) Построим модель у = f (х3 , х6 , х7 , х8 , z) в линейной форме.


Результаты регрессионного анализа

Модель в линейной форме будет иметь вид:

у(х) = -5,64 + 0,715х2 + 0,475х3 + 6,786х6 + 1,284х7 – 0,037х8

Х6 (тип дома), значимо воздействует на формирование цены квартиры в модели.

5) Оценим статистическую значимость параметров регрессионной модели с помощью t-критерия; нулевую гипотезу о значимости уравнения регрессии проверим с помощью F-критерия; оценим качество уравнения регрессии с помощью коэффициента детерминации R2 .

Характеристика остатков линейной регрессии

Характеристика

Значение

Среднее значение

0,000

Дисперсия

10,579

Приведенная дисперсия

12,220

Средний модуль остатков

2,237

Относительная ошибка

7,144

Критерий Дарбина-Уотсона

1,154

Коэффициент детерминации

0,991

F - значение ( n1 = 8, n2 = 58)

764,697

Критерий адекватности

36,993

Критерий точности

47,492

Критерий качества

44,867

Уравнение значимо с вероятностью 0.95

Коэффициент детерминации показывает долю вариации результативного признака под воздействием изучаемых факторов. Следовательно, около 99,1% вариации зависимой переменной учтено в модели и обусловлено влиянием включенных факторов.

Табличное значение F-критерия (Fкрит ) при доверительной вероятности 0,95 при n1 = 8 и n2 = 58 составляет 2,10. Проверка гипотезы о значимости уравнения регрессии проводится на основании:

если Fфакт > Fкрит , то модель статистически значима;

если Fфакт < Fкрит , то модель статистически незначима.

Fфакт > Fкрит , значит модель статистически значима, т.е. пригодна к использованию.

Оценим с помощью t-критерия Стьюдента статистическую значимость коэффициентов уравнения регрессии.

Табличное значение t-критерия при 5% уровне значимости и степени свободы k = 69-8-1 = 60 составляет 2,0003.

Если tрасч > tтабл , то коэффициент статистически значим.

Характеристика модели

Коэффициенты

Стандартная ошибка

t-статистика

Y-пересечение

-6,10491

1,867676003

-3,268720937

Переменная Х 1

-0,16426

1,096321271

-0,149825399

Переменная Х 2

0,744173

0,335026167

2,221237839

Переменная Х 3

0,36827

0,092869614

3,965447278

Переменная Х 4

0,147869

0,132602783

1,115126788

Переменная Х 5

0,177213

0,195399452

0,906925347

Переменная Х 6

6,93635

0,869661345

7,975921084

Переменная Х 7

1,777648

1,124095736

1,581402513

Переменная Х 8

-0,04802

0,072432334

-0,662966567


tb 0 = 3,2687 > 2,0003 => коэффициент регрессии b0 статистически значим;

tb 1 = 0,1498 < 2,0003 => коэффициент регрессии b0 статистически незначим;

tb 2 = 2,2212 > 2,0003 => коэффициент регрессии b0 статистически значим;

tb 3 = 3,9654 > 2,0003 => коэффициент регрессии b0 статистически значим;

tb 4 = 1,1151 < 2,0003 => коэффициент регрессии b0 статистически незначим;

tb 5 = 0,9069 < 2,0003 => коэффициент регрессии b0 статистически незначим;

tb 6 = 7,9759 > 2,0003 => коэффициент регрессии b0 статистически значим;

tb 7 = 1,5814 < 2,0003 => коэффициент регрессии b0 статистически незначим;

tb 7 = 0,6630 < 2,0003 => коэффициент регрессии b0 статистически незначим;

6) существует ли разница в ценах на квартиры, расположенных в северной и южной частях Санкт-Петербурга?

tb 2 = 2,2212 > 2,0003, tb 3 = 3,9654 > 2,0003 и tb 6 = 7,9759 > 2,0003,

значит факторы Х2 (район города), Х3 (общая площадь квартиры) и Х6 (тип дома) значимо влияют на формирование цен на квартиры.

Анализ показал, что разница в ценах на квартиры, расположенные в северной и южной частях Санкт-Петербурга существенна, т.к. tb 2 = 2,2212 > 2,0003.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:59:46 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
10:51:54 09 февраля 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
16:25:22 30 ноября 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
08:22:35 29 ноября 2015

Работы, похожие на Лабораторная работа: Линейное уравнение регрессии

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151360)
Комментарии (1844)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru