Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Формула Бернулли. Локальная функция Лапласа

Название: Формула Бернулли. Локальная функция Лапласа
Раздел: Рефераты по математике
Тип: контрольная работа Добавлен 15:10:47 22 мая 2003 Похожие работы
Просмотров: 201 Комментариев: 3 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Контрольная работа 3.

1. Прибор может работать в двух режимах ¾ нормальном и ненормальном. Нормальный режим встречается в 80% всех случаев работы прибора, ненормальный ¾ в 20%. Вероятность выхода прибора за время t в нормальном режиме равна 0,1, в ненормальном ¾ 0,7. Найти вероятность выхода прибора из строя за время t .

Решение


Пусть гипотезы и состоят в том что прибор работает:

- в нормальном режиме, вероятность

- в ненормальном режиме, вероятность

Гипотезы несовместны и сумма их вероятностей равна 1. Значит, гипотезы образуют полную группу.

Пусть событие А состоит в том, что прибор выходит из строя. При условии, что режим работы нормальный, вероятность наступления А равна

При условии что режим работы ненормальный вероятность наступления А


По формуле полной вероятности вычислим вероятность того что прибор выйдет из строя за время t

Ответ: 0,22

2. В лотерее каждый десятый билет выигрывает 10 рублей, сам же лотерейный билет стоит 1 рубль. Некто приобрел 10 билетов. Найти вероятность того, что он:

а) не будет в проигрыше;

б) будет в выигрыше.

Решение

Вероятность выиграть по произвольному билету, по формуле классической вероятности равна p=0.1

Проводится n=10 испытаний c одинаковой вероятностью наступления события в каждом.

Для того чтобы игрок не был в проигрыше, должен выиграть хотя бы один билет то есть k>=1

Для того чтобы игрок был в выигрыше, должно выиграть как минимум два билета или k>1

По формуле Бернулли,


Теперь найдем вероятность противоположного события p(k>=1)=1-p(k<1)=1-0.349=0.651 – вероятность не оказаться в проигрыше

P(k>=1)=p(k>1)+p(k=1) – вероятность суммы несовместных событий

P(k>1)=p(k>=1)-p(k=1)=0.651-0.387=0.264 – вероятность выигрыша

Ответ: а)0,651 б)0,264

3. Семена некоторых растений прорастают с вероятностью 0,8. Найти вероятность того, что из 2000 посаженных семян прорастает:

а) 1600 семян;

б) не менее 1600 семян.

Решение

Мы имеем дело с серией последовательных независимых испытаний, в каждом из которых с одинаковой вероятностью может произойти событие А (семя прорастает)

Количество испытаний n=2000

Вероятность наступления события А равна p(A)=0.8=p

q=1-p=1-0.8=0.2

Условия задачи соответствуют схеме Бернулли. В силу того, что n достаточно велико, удобно применить для вычислений локальную теорему Муавра-Лапласа. Вероятность того, что событие А наступит ровно k=1600раз, приблизительно равна

Здесь - локальная функция Лапласа, значения которой можно взять из таблиц.

Получим


Ответ :0,0223

4. В коробке лежат 10 исправных и 3 неисправных батарейки. На удачу извлекаются 3 батарейки. Составить закон распределения случайной величины --- числа исправных батареек среди извлеченных.

Решение

Пусть Х- дискретная случайная величина- число неисправных батареек. Х может принимать значения 0,1,2 или 3. Найдем вероятности каждого из значений Х.


Вероятность для каждой батарейки быть неисправной определяем по формуле классической вероятности.

Проводится n=3 испытания Бернулли в каждом из которых p=0.231, q=1-p=0.769

По формуле Бернулли

Проверка: p(X=0)+p(X=1)+p(X=2)+p(X=3)=0.455+0.410+0.123+0.012=1.00

Получаем закон распределения случайной величины Х:

Х

0

1

2

3

Р

0,455

0,410

0,123

0,012

5. Случайная величина Х распределена по нормальному закону, причем P(X>2) = 0,5, а P(1<X<3) = 0,8. Найти математическое ожидание и дисперсию случайной величины Х.

Решение

Для случайной величины X с нормальным распределeнием вероятность попадания в интервал равна


,где Ф(х) – интегральная функция Лапласа,

значения которой табулированы.

По этой формуле



Отсюда следует что

Из таблиц определяем a=2 – математическое ожидание Х

Кроме того


Значит


из таблицы определяем что -среднеквадратическое

отклонение

Дисперсия

Ответ : Математическое ожидание

Дисперсия

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:55:39 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
18:33:44 29 ноября 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
08:19:56 29 ноября 2015

Работы, похожие на Контрольная работа: Формула Бернулли. Локальная функция Лапласа

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151067)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru