Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Процессы, механизмы и кинетические модели в синтетической химии

Название: Процессы, механизмы и кинетические модели в синтетической химии
Раздел: Рефераты по химии
Тип: реферат Добавлен 11:21:24 01 февраля 2009 Похожие работы
Просмотров: 98 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Процессы, механизмы и кинетические модели в синтетической химии

Окислительная димеризация алкинов (реакция Глязера-Залькинда) занимает важное место в синтетической химии.

В этой реакции, в отличие от Вакер-процесса, оба компонента каталитической системы Cu(I) и Cu(II) принимают участие в образовании продукта, а О2 (или другой окислитель, Q, Fe(CN)6 3– и т.д.) регенерирует необходимую для реакции форму Cu(II). Дегидроконденсацию алкинов можно провести в электрохимической системе (в анодной камере электролизера), например, по реакции

При использовании в качестве окислителя Cu(OAc)2 в Ру реакция является автокаталитической. В системе CuCl-CuCl2 -LiCl-H2 O при большом избытке LiCl (т.е. при постоянной концентрации Cl ) скорость димеризации метилацетилена описывается уравнением

свидетельствующем о наличии лимитирующей стадии и аниона RCºC– в переходном состоянии лимитирующей стадии

[(RCºC–)·2Cu(I)·Cu(II)]≠

Таким образом, продукт превращения интермедиата RCºCCu·CuCl в реакции с CuCl2 (Х1) и является интермедиатом, участвующим в образовании диалкина. Предполагается следующая схема реакции:

Образование радикала RCºC· в стадии (с его последующей димеризацией) не проходит по термохимическим соображениям. В Мерокс-процесе стадия с участием RS· возможна. Похожая на реакцию димеризации HCN также осуществляется в растворах Cu(I)-Cu(II)

Гидролиз дициана дает оксамид NH2 COCONH2 – очень ценное удобрение.

Синтез оксида этилена. Этиленоксид (ЭО) получают по реакции

на серебряных катализаторах 15% Ag/a-Al2 O3 при 240 – 270о С и давлении 3МПа. При конверсии этилена < 10% селективность 80 – 85%. Побочная реакция – глубокое окисление этилена до СО2 . Селективность процесса повышают добавками Cl (NaCl) в катализатор или добавками дихлорэтана в сырье в количестве 2 – 10 ppm. СО2 образуется из С2 Н4 и при окислении ЭО, поэтому химизм процесса определяется совокупностью параллельно-последовательных реакций

Обсуждаются различные гипотезы о механизме процесса, предполагающие образование СО2 на тех же центрах ZO2 , на которых образуется ЭО, или участие разных центров в образовании ЭО (ZO2 ) и СО2 (ZO). Скорость расходования О2 в области PC2 H4 > 0.9 атм на промотированном хлором катализаторе описывается уравнением первого порядка по РО2 (лимитирует адсорбция О2 ). При РО2 > 0.5 атм и PC2 H4 ≤ 0.02

Для очень простой схемы

Из уравнения получаются оба частных случая. Процесс тормозится ЭО и СО2 , поэтому, например, при PC2 H4 > 0.9 атм в условиях первого порядка по РО2

Если поверхностные соединения серебра и кислорода представить в виде химических соединений, то центрам Z, ZO2 и ZO можно сопоставить Ag2 O, Ag2 O3 и Ag2 O2 , соответственно. Имеются и другие представления об адсорбированных на поверхности серебра формах кислорода, в том числе и об участии в реакции атомов кислорода (или О ), находящихся в приповерхностном слое.

Синтез винилацетата (реакция Моисеева). Реакция окислительной этерификации или окислительного ацетоксилирования олефинов

была открыта в МИТХТ им. Ломоносова в 1960 г. Реакция осуществляется в растворах солей PdCl2 -CuCl2 и Cu(OAc)2 в уксусной кислоте в присутствии NaOAc. Температура процесса 110 – 130о С и давление 3.0 – 4.0 МПа. Селективность по этилену – 83%. Кинетическое уравнение получено Моисеевым и Беловым в системе, не содержащей CuCl2

в предположении, что в условиях квадратичного торможения ацетатом натрия весь Pd(II) находится в форме комплекса Na2 Pd(OAc)4 . В работе П.Генри приведена другая форма уравнения в предположении, что активной формой Pd(II) является димер Na2 Pd2 (OAc)6 , концентрация которого проходит через максимум по [NaOAc]

Процесс синтеза винилацетата по реакции протекает в рамках механизма, аналогичного "Вакер"-процессу. Предполагается превращение p-комплекса Pd(II) в s-палладийорганическое соединение под действием OAc из раствора, а распад полученного интермедиата включает стадию b-элиминирования ~PdH

,

где [Pd] – мономерный или димерный комплекс Pd(II). Окислением H-[Pd] и заканчивается каталитический цикл.

Фирмы Hoechst и др. разработали для реакции (15) гетерогенный катализатор, содержащий соли Pd(II), Au(III) и KOAc на Al2 O3 . Процесс протекает при 175 – 200 о С и давлении 0.5 – 1.0 МПа с высокой селективностью: 94% по этилену и 98% по уксусной кислоте. Состояние Pd(II) в условиях процесса и роль соединений золота пока не ясны.

Халкон-процесс. Эпоксидирование олефинов гидропероксидами осуществляется в промышленном варианте в растворах комплексов Mo(VI). В качестве ROOH используют 2-этилфенилгидропероксид (гидропероксид этилбензола, ГПЭБ), гидропероксид кумила (ГПК) и третбутилгидропероксид (ТБГП). В случае ГПЭБ сопряженно с пропиленоксидом получают стирол:

Скорость реакции описывается уравнением

где F Mo = 1 + K ГПЭБ [ГПЭБ] + K МФК [МФК] + K ОП [ОП] + K H 2 O [H2 O] есть закомплексованность катализатора, МФК – метилфенилкарбинол, ОП – пропиленоксид. Ki – константы равновесия образования соответствующих комплексов Mo. Как видно из уравнения, процесс протекает с лимитирующей стадией, переходное состояние которой включает ГПЭБ, Mo(VI) и пропилен. Показано, что активным катализатором является пропиленгликолятный комплекс Mo(VI), реакция которого с ГПЭБ и C3 H6 приводит к ОП.

Окисление спиртов. Окисление (или окислительное дегидрирование) спиртов на металлических и окисных катализаторах до альдегидов и кетонов является важным промышленным процессом.

Рассмотрим подробнее процесс окисления метанола до формальдегида

В промышленности реализованы два варианты процесса окисления:

на оксидах MoO3 -Fe2 O3 (и др. оксидных катализаторах) процесс протекает в кинетической области при 300 – 350о С и 15-кратном избытке воздуха по отношению к метанолу. При этом достигаются 100% превращение спирта, высокая селективность и синтез безметанольного формальдегида, необходимого для процессов его полимеризации.

На серебряных катализаторах (мелкокристаллическое серебро, Ag/пемза, Ag/a-Al2 O3 и др.) процесс протекает в адиабатическом режиме в тонком слое катализатора (8 – 10 см) во внешнедиффузионной области. Количество подаваемого кислорода ~0.9 от стехиометрии.

И основная реакция, и побочная реакция

– экзотермические процессы. Эндотермический процесс дегидрирования, который имеет место в условиях процесса

не компенсируют большого количества выделяющегося тепла. Поэтому при низких температурах (220 – 250о С) процесс протекает в кинетическом режиме, однако при больших нагрузках по спирту и небольшом количестве воздуха процесс не удерживается в изотермическом режиме, и начинается быстрый подъем температуры, обусловленный плохим отводом тепла и повышением температуры зерна катализатора Тз. Повышение Тз вызывает экспоненциальный рост скорости, рост количества выделяющегося тепла qподв (ккал/(л·час)) и еще больший рост Тз, который останавливается в новом стационарном состоянии при высоком градиенте Тз – Tf (Tf – температура газа), обеспечивающем равенство отводимого и подводимого тепла qподв @ qотв. Таким образом:

в области низких температур Тз @ Tf, qподв @ qотв, процесс протекает в кинетической области (область i);

при повышении Тз возникает неустойчивый режим (область n);

при Тз > Tf режим адиабатический (qподв @ qотв), внешнедиффузионная область, режим "зажигания", работает тонкий слой катализатора (область k).

Температуру адиабатического разогрева можно оценить по уравнениям

; ,

где a – объемный коэффициент теплоотдачи (кал/(л·час·гр)), Q – количество выделяемого тепла (кал/моль), Cfb – скорость реакции в диффузионном режиме, b – коэффициент скорости диффузии, Cf – концентрация спирта в потоке.

При равенстве qподв = qотв,

,

где n – теплоемкость, кал/(л·гр).

Режим зажигания устанавливается при

, где ,

Е – наблюдаемая энергия активации процесса.

В режиме диффузионного "зажигания" Tf = 650 – 700о С, Тз = 900 – 1000о С, но при малых временах контакта селективность процесса достигает 95% при 90% конверсии метанола. Полученный в результате абсорбции водой раствор 40% формальдегида (формалин) можно использовать как товарный продукт.

Окислительное хлорирование этилена до дихлорэтана. Процесс синтеза дихлорэтана (ДХЭ) по реакции

протекает в области 325 – 525о С (лучше 350 – 400о С) на меднохлоридных катализаторах CuCl-KCl/SiO2 или CuCl2 /g-Al2 O3 практически при 100% конверсии HCl с выходом ДХЭ по этилену ~ 96%. Дихлорэтан образуется на поверхности катализатора без участия свободного Cl2 . Механизм реакции изучен весьма детально. Схема механизма приведена ниже для второго катализатора.

Если вектор стехиометрических чисел стадий маршрута равен |2 2 2 2 1 1|, получим итоговое уравнение. Скорость образования ДХЭ описывается уравнением с учетом 2-х медленных стадий (3) и (5):

,

где .

При PHCl ³ 2 кПа реализуется нулевой порядок по PHCl, и при определенных соотношениях констант уравнение преобразуется к виду

Реакции окисления в промышленной неорганической химии

Каталитические процессы активно применяются для окисления неорганических соединений с целью получения полезных продуктов и для очистки газовых выбросов и водных стоков.

(процессы дожигания СО, очистка воздуха помещений)

(получение серы, очистка природного и попутных газов от H2 S)

(процесс Клауса, очистка газовых выбросов и синтез серы)

(производство H2 SO4 )

(производство HNO3 )

(Дикон-процесс, синтез Cl2 )

(производство HNO3)

(производство N2O)

(очистка стоков)

Рассмотрим в качестве примера реакцию (Н4):

На двух различных катализаторах Fe2 O3 /SiO2 (1) и V2 O5 –K2 SO4 /Al2 O3 (2) скорость реакции описывается кинетическим уравнением, полученным для случая неоднородной поверхности.

где a' = 0.75 и b' = 0.25 для железооксидного катализатора (1) и a' = 0.4 и b' = 0.6 для ванадийоксидного катализатора (2).

Схема механизма, соответствующая уравнению

лимитирующая стадия

Реакции окисления SO2 на Pt (H4), NO и NH3 на Pt-Rh (H5 и H7) протекают в адиабатическом режиме диффузионного "зажигания".


Вопросы для самоконтроля

Привести варианты классификации реакций окисления.

Назвать окислители, используемые в промышленных процессах и в синтетической органической химии.

Привести примеры гомогенно-каталитического окисления пероксидом водорода и гидропероксидом.

Из каких макростадий (блоков элементарных стадий) состоит Вакер-процесс?

Кинетика и механизм первого блока стадий Вакер-процесса.

Условия проведения реакции Моисеева в гомогенном и гетерогенном вариантах.

Записать механизм и вывести кинетическое уравнение для Халкон-процесса.

Основные стадии Мерокс-процесса.

Чем отличаются механизмы окислительной димеризации RSH и RCºCH?

Получите кинетическое уравнение окисления этилена до этиленоксида при больших PC2 H4 .

Почему происходит адиабатическое зажигание и переход во внешнедиффузионную область в процессе окисления спиртов на серебряных катализаторах?

Объясните суть химических процессов, имеющих место в стадии (4) в схеме образования дихлорэтана.

Перечислить основные промышленные каталитические процессы окисления в неорганической химии.


Литература для углубленного изучения

1. Гейтс Б., Кетцир Дж., Шуйт Г., Химия каталитических процессов, М, Мир, 1981.

2. Темкин О.Н., Химия и технология металлокомплексного катализа, М., МИТХТ, 1980, ч. III.

3. Моисеев И.И., p-Комплексы в жидкофазном окислении олефинов, М., Наука, 1970, 240 с.

4. Моисеев И.И., Достижения и проблемы окислительного катализа (катализ соединениями палладия), в книге: "Chemical Eng. Science for Advanced Technologies", Proceed. of Second Session of Continuing Educ. School, Moscow, Karpov Inst. of Physical Chem., ed. V.A.Makhlin, 1996, p. 37 – 73.

5. Толстиков Г.А., Реакции гидроперекисного окисления, М., Наука, 1976, с. 5 – 75, 96 – 114.

6. Денисов Е.Т., Саркисов О.М., Лихтенштейн Г.И., Химическая кинетика, М., Химия, 2000.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:54:12 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
08:19:04 29 ноября 2015

Работы, похожие на Реферат: Процессы, механизмы и кинетические модели в синтетической химии

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(149897)
Комментарии (1829)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru