Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Анализ данных в линейной регрессионной модели

Название: Анализ данных в линейной регрессионной модели
Раздел: Рефераты по экономике
Тип: контрольная работа Добавлен 04:26:05 09 декабря 2010 Похожие работы
Просмотров: 62 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Государственное образовательное учреждение высшего профессионального образования

«Московский государственный институт электронной технки

(технический универститет)»

Курсовая работа

по дисциплине

«Теория вероятности и математическая статистика»

Тема работы

«Анализ данных в линейной регрессионной модели»

Выполнил:

Студент группы ЭКТ-21

Рыжов С.А.

Проверил:

Преподаватель

Бардушкина И. В.

Москва - 2010


Вариант 20.

Задание 1

Выполнить предварительную обработку результатов наблюдений, включающую:

1 построение диаграммы рассеивания (корреляционного поля);

2 группировку данных и построение корреляционной таблицы;

3 оценку числовых характеристик для негруппированных и группированных данных.

Оценка числовых характеристик для негруппированных данных:

X

Y

X

Y

4,19

9,19

4,44

9,13

3,04

11,94

11,31

4,58

4,6

8,09

7,57

3,14

9,83

10,33

1,62

14,61

8,66

7,15

5,71

6,48

1,3

12,34

11,06

6,78

4,22

16,35

10,35

2,15

5,11

7,7

2,46

9,66

9,85

5,64

1,02

11,19

8,8

4,52

5,77

7,77

12,17

4,52

8,63

4,05

11,25

2,06

6,91

4,76

5,73

7,41

3,56

8,54

4,05

10,51

9,47

2,22

5,41

9,97

6,16

3,72

1,28

14,68

8,26

3,57

1,67

9,67

6,7

14,32

11,99

3,31

4,95

10,64

7,66

5,93

3,37

10,73

5,17

9,87

1,53

10,13

3,26

11,52

9,54

4,95

12,58

2,88

3,11

5,38

8,34

3,57

5,09

5,79

5,79

4,39

11,08

3,87

3,42

9,71

8,74

-2,23

Сумма X

317.78

Сумма Y

369,18

MX

6,3556

MY

7,3836

s2 X

11,02005

s2 Y

15,31479

KXY

-9,1594

ρXY

-0,7194

Числовые характеристики для негруппированной выборки находятся по следующим формулам:

, ;

;

;

;

;


Построение корреляционного поля:

Построение корреляционной таблицы:

Таблица 1.1

Y

X

-1.5

1.5

4.5

7.5

10.5

13.5

16.5

ni .

2.5

0

0

1

1

8

3

0

13

5.5

0

0

4

5

6

1

1

17

8.5

1

1

8

1

1

0

0

12

11.5

0

3

4

1

0

0

0

8

nj .

1

4

17

8

15

4

1

50

Оценка числовых характеристик для группированных данных:

, ;

, ;

;

;

, ;

;

;

= - 0.87

Задание 2

Для негруппированных данных проверить гипотезу об отсуствии линейной статистической связи между компонентами X и Y при альтернативной гипотезе ( уровень значимости α = 0,05);

Выборочное значение статистики равно

,

Используя средства Matlab, найдем


Так как выборочное значение статистики больше квантили распределения Стьюдента, гипотеза H 0 отклоняется в сторону гипотезы H 1 . Корреляция значима.

Задание 3

Для негруппированых данных получить интервальную оценку для истинного значения коэффициента корреляции ρX , Y , при уровне значимости α = 0,05.

Используя средства Matlab, найдем

,

,

Задание 4

Для негруппированных и группированных данных составить уравнения регрессии Y на x и X на Y.

Рассмотрим вначале случай негруппированных данных.

Этот интервал не содержит нуля, т.е. с доверительной вероятностью 1 – ЫВА = 0,95 существует корреляция между X и Y и имеет смысл построение уравнений регрессии.


,

y ( x ) = 12,77 – 0,848*x ;

x ( y ) = 10,86 – 0,6*y ;

Проверка.

, .

, ;

,

, ;

Случай группированных данных.

Подставим найденные значения в уравнеиня линейной регрессии Y на x и X на y . Получим:

y ( x ) = 17,14 – 1,4*x ;

x ( y ) = 10,83 – 0,54*y ;

Проверка:

Задание 5

Для негруппированных данных нанести графики выборочных регрессионных прямых на диаграмму рассеивания.


Задание 6

Для негруппированных данных по найденным оценкам параметров линейной регрессии Y на x получить оценку s 2 для дисперсии ошибок наблюдений σ 2 , найти коэффициент детерминации R 2 , построить доверительные интервалы для параметров регрессии a и b, дисперсии ошибок наблюдений σ 2 и среднего значения Y при x = x 0 .

Для негруппированных данных были получены следующие оценки числовых характеристик и коэффициентов регрессии: , , , , , , , .

Используя соотношение , вычислим остаточную сумму

;

;

;

.

;

Тогда оценка дисперсии ошибок наблюдений равна

.

Коэффициент детерминации равен

.

Поскольку (знак ), то сделаем проверку правильности расчетов:

(верно).

Полученный результат для коэффициента детерминации означает, что уравнение регрессии на 49,7% объясняет общий разброс результатов наблюдений относительно горизонтальной прямой .

Построим доверительные интервалы для параметров линейной регрессии и дисперсии ошибок наблюдений.

С помощью Matlab найдем квантили распределений Стьюдента и :

, , ;

– доверительный интервал для параметра :

;

;

– доверительный интервал для параметра :

;

;

– доверительный интервал для дисперсии ошибок наблюдений :

;

.

-Найдем границы доверительных интервалов для среднего значения при :

;

.

Задание 7. Для негруппированных данных проверить значимость линейной регрессии Y на x (уровень значимости α = 0,05).

Гипотеза : отклоняется на уровне значимости , так как доверительный интервал не накрывает нуль с доверительной вероятностью 0,95.

Этот же результат можно получить, используя для проверки гипотезу : и статистику .

С помощью Matlab найдем квантили распределения Фишера:

, .

Выборочное значение статистики равно:

.

Поскольку , то гипотеза : отклоняется на уровне значимости . Таким образом, линейная регрессия на статистически значима.

Задание №8

Для данных, сгруппированных только по , проверить адекватность линейной регрессии на (уровень значимости ).

Для проверки адекватности воспользуемся корреляционной таблицей. Будем считать, что середины интервалов группировки , , являются значениями компоненты . Тогда число повторных наблюдений равно 4. Запишем результаты этих наблюдений в виде таблицы

Таблица 1.2

2,5

5,5

8,5

11,5

11,94

12,34

14,68

9,87

11,52

9,71

14,61

9,66

11,19

8,54

10,73

10,13

5,38

9,19

8,09

16,35

7,70

7,41

10,51

9,97

9,87

4,39

6,48

7,77

4,76

3,72

14,32

10,64

5,79

9,13

10,33

7,15

5,64

4,52

4,52

3,57

3,14

4,05

2,22

3,57

4,95

-2,23

4,52

2,06

3,11

2,88

4,58

6,78

2,15

3,87

13

17

12

8

10,79

8,59

9,65

3,74

Для удобства расчетов в последней строке таблицы приведены средние значения , .

.

Получим уравнение выборочной линейной регрессии на для данных, сгруппированных по :

;

, , , , ;

y ( x ) = 8,29 – 0,9x .

;

.

Выборочное значение статистики равно

.

Так как квантиль распределения Фишера, вычисленный с помощью Matlab, равен

3,19,

то , а значит, линейная регрессия на для данных, сгруппированных по , адекватна результатам наблюдений.

Задание 9. Для негруппированных данных проверить гипотезу : при альтернативной гипотезе : (уровень значимости )

Имеются следующие величины: , , , , .

Сначала проверяется гипотеза :, альтернативная гипотеза :.

Статистика равна

= 1,931

С помощью средств Matlab, найдем:


F0,975 (n -1; n -1)=F0,975 (49,49) = 1.7622

z > F0,975 (n -1; n -1),

следовательно отклоняется, а значит что

Теперь можно проверить гипотезу, :, при альтернативной гипотезе :.

Т.к. , статистика имеет вид

= 1,418

Найдем количество степеней свободы

≈3,625

С помощью средств Matlab, найдем:

z < , значит нет оснований отклонять гипотезу :.

Приложение

A = [ 4.19 3.04 4.60 9.83 8.66 1.30 4.22 5.11 9.85 8.80 12.17 11.25 5.73 4.05 5.41 1.28 1.67 11.99 7.66 5.17 3.26 12.58 8.34 5.79 3.42 4.44 11.31 7.57 1.62 5.71 11.06 10.35 2.46 1.02 5.77 8.63 6.91 3.56 9.47 6.16 8.26 6.70 4.95 3.37 1.53 9.54 3.11 5.09 11.08 8.74;

9.19 11.94 8.09 10.33 7.15 12.34 16.35 7.70 5.64 4.52 4.52 2.06 7.41 10.51 9.97 14.68 9.67 3.31 5.93 9.87 11.52 2.88 3.57 4.39 9.71 9.13 4.58 3.14 14.61 6.48 6.78 2.15 9.66 11.19 7.77 4.05 4.76 8.54 2.22 3.72 3.57 14.32 10.64 10.73 10.13 4.95 5.38 5.79 3.87 -2.23]

x = A(1,:);

y = A(2,:);

Mx = mean(x)

Dx = var(x,1)

My = mean(y)

Dy = var(y,1)

plot(x,y,'g*')

grid on

hold on

axis([1 13 -3 18]);

gca1 = gca;

set(gca1,'xtick',[1 4 7 10 13],'ytick',[-3 0 3 6 9 12 15 18]);

xlabel('X');

ylabel('Y');

z = 12.77 - 0.848*x; %построение регрессии Y на x

Zplot = plot(z,x);

set(Zplot,'Color','Red','LineWidth',[2])

hold on

text(12, -1,'x(y)');

text(11.8, 2,'y(x)');

t = 10.86 - 0.6*y; %построение регрессии X на y

Tplot = plot(t,y);

set(Tplot,'Color','Red','LineWidth',[2])

hp = line([1 6.36],[7.38 7.38]); %эти прямые показывают положение

set(hp,'Color','blue','LineWidth',[1.5]) %среднего выборочного

hp = line([6.36 6.36],[-3 7.38]);

set(hp,'Color','blue','LineWidth',[1.5])

K = cov(x,y) %находим ковариацию

DEtK = det(K)

M = corrcoef(x,y) %коэффициент корреляции

detM = det(M)

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:49:25 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
08:16:38 29 ноября 2015

Работы, похожие на Контрольная работа: Анализ данных в линейной регрессионной модели

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151310)
Комментарии (1844)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru