Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Лабораторная работа: Кривошипно-ползунный механизм, его структура, схема, анализ

Название: Кривошипно-ползунный механизм, его структура, схема, анализ
Раздел: Промышленность, производство
Тип: лабораторная работа Добавлен 01:30:58 09 декабря 2010 Похожие работы
Просмотров: 14320 Комментариев: 2 Оценило: 4 человек Средний балл: 4.5 Оценка: неизвестно     Скачать

1. Структурный анализ механизма

Представлен кривошипно-ползунный механизм.

Число степеней исследуемого механизма определим по формуле Чебышева:

(1)

где n – число подвижных звеньев в составе исследуемой кинематической цепи; p4 и p5 – соответственно число пар четвертого и пятого класса.

Для определения величины коэффициента n проанализируем структурную схему механизма (рисунок 1):

Рисунок 1 – Структурная схема механизма

Структурная схема механизма состоит из четырех звеньев:

1 – кривошип,

2 – шатун АВ,

3 – ползун В,

0 – стойка,

при этом звенья 1 – 3 являются подвижными звеньями, а стойка 0 – неподвижным звеном. Она представлена в составе структурной схемы двумя шарнирно-неподвижными опорами и направляющей ползуна 3.

Следовательно, n=3.

Для определения значений коэффициентов p4 и p5 найдем все кинематические пары, входящие в состав рассматриваемой кинематической цепи. Результаты исследования заносим в таблицу 1.

Таблица 1 – Кинематические пары

Кинематическая пара (КП)

Схема кинема-

тической пары

Класс кинема-

тической пары

Степень подвиж-

ности

1 0 – 1

5

вращательная

1

2 1 – 2

5

вращательная

1
3 2 – 3

5

вращательная

1
4 3 – 0

5

вращательная

1

Из анализа данных таблицы 1 следует, что исследуемый механизм ДВС с увеличенным ходом поршня состоит из семи пар пятого класса и образует замкнутую кинематическую цепь. Следовательно, p5 =4, а p4 =0.

Подставив найденные значения коэффициентов n, p5 и p4 в выражение (1), получим:

(1)


Для выявления структурного состава механизма разбиваем рассматриваемую схему на структурные группы Ассура.

Первая группа звеньев 0-3-2 (рисунок 2).

Рисунок 2 – Структурная группа Ассура

Данная группа состоит из двух подвижных звеньев:

шатун 2 и ползун 3;

двух поводков:

кривошип 1 и направляющая (стойка) 0;

и трех кинематических пар:

1-2 – вращательная пара пятого класса;

2-3 – вращательная пара пятого класса;

3-0 – поступательная пара пятого класса;

тогда n=2; p5 =3, a p4 =0.

Подставив выявленные значения коэффициентов в выражение (1),

получим:

Следовательно, группа звеньев 4-5 является структурной группой Ассура 2 класса 2 порядка 2 вида.

Вторая группа звеньев 0-1 (рисунок 3).


Рисунок 3 – Первичный механизм

Данная группа звеньев состоит из подвижного звена – кривошипа 1, стойки 0 и одной кинематической пары:

0 – 1 – вращательная пара пятого класса;

тогда n=1; p5 =1, a p4 =0.

Подставив найденные значения в выражение (1), получим:

Следовательно, группа звеньев 1 – 2 действительно является первичным механизмом с подвижностью 1.

Структурная формула механизма

МЕХАНИЗМ=ПМ(W=1) + СГА(2 класс, 2 порядок, 2 вид)

2. Синтез кинематической схемы

Для синтеза кинематической схемы сперва необходимо установить масштабный коэффициент длин μ . Для нахождения μ необходимо взять натуральный размер кривошипа OС и разделить его на размер отрезка произвольной длины │OС│:


После этого, с помощью масштабного коэффициента длин, переводим все натуральные размеры звеньев в отрезки, с помощью которых мы будем строить кинематическую схему:

После вычисления размеров приступаем к построению одного положения механизма (рисунок 4) с помощью метода засечек.

Для этого сперва вычерчиваем стойку 0 на которой закреплен кривошип. Затем проводим через центр окружности, которая была начерчена для построения стойки, горизонтальную прямую ХХ. Она необходима для последующего нахождения центра ползуна 3. Далее из центра этой же окружности проводим две другие радиусом и . Затем от туда же строим чертим отрезок длиной под углом к горизонтальной прямой ХХ. Точки пересечения этого отрезка с построенными окружностями будут точками А и С соответственно. Затем из точки А строим окружность радиусом .

Точка пересечения этой окружности с прямой ХХ будет являться точкой В. Вычерчиваем направляющую для ползуна, которая будет совпадать с прямой ХХ. Строим ползун и все остальные необходимы детали чертежа. Обозначаем все точки. Синтез кинематической схемы завершен.

3. Кинематический анализ плоского механизма

Приступаем к построению плана скоростей для положения механизма. Для упрощения расчетов следует рассчитать скорости и направления для всех точек положения механизма, а затем строить план скоростей.

Рисунок 4 – Одно из положений механизма

Проанализируем схему кривошипно-ползунного механизма: точка О и О1 являются неподвижными точками, следовательно, модули скоростей этих точек равны нулю ().

Вектор скорости точки А представляет собой геометрическую сумму вектора скорости точки О и скорости относительного вращательного движения точки А вокруг точки О:

. (2)

Линия действия вектора скорости является перпендикуляром к оси кривошипа 1, а направление действия этого вектора совпадает с направлением вращения кривошипа.

Модуль скорости точка А:


, (3)

где - угловая скорость звена ОА; - длина OС.

Угловую скорость найдем по формуле, подставив заданное значение n:

. (4)

Подставив заданные значения в выражение (5), получим:

. (5)

Далее рассчитаем масштабный коэффициент плана скоростей :

, (6)

где - модуль скорости точки А; - произвольно выбранный отрезок, изображающий на плане скоростей вектор скорости точки А. Примем , тогда по выражению (6) получим:

. (7)


Отрезок, изображающий вектор скорости точки С, найдем, воспользовавшись теоремой подобия:

(8)

откуда

. (9)

Отложив отрезок на плане скоростей найдем положение точки с . Этот отрезок будет являться вектором скорости точки С.

Вектор скорости точки В, принадлежащей шатуну 2, представляет собой геометрическую сумму вектора скорости точки А и вектора скорости относительного вращательного движения точки В вокруг точки А:

(10)

В то же время точка В принадлежит и ползуну 3. Ползун 3 совершает только прямолинейное возвратно-поступательное движение вдоль направляющей XX, следовательно, линия действия вектора скорости точки В проходит параллельно XX:

. (11)

Разрешив графически векторные уравнения (9, 10, 11), построим план скоростей (рисунок 5).

Замерив для каждого плана скоростей длину векторов и с помощью масштабного коэффициента скоростей, найдем числовые значения по формулам

(12)

Так же рассчитаем угловые скорости для звеньев, совершающих вращательное движение:

(13)

Для упрощения расчетов построим таблицу (таблица 2), внося найденные значения по уравнениям (12) и (13) линейных и угловых скоростей, соответственно:

Таблица 2 – Линейные, угловые скорости положения механизма

Положение Линейные скорости (м/с) Угловые скорости (с-1 )
1 29,3 29,3 11,1 22,7 9,77 36,63 8,53

Рисунок 5 – План скоростей


Для построения плана ускорений составим векторные уравнения. Вектор ускорения точки А представляет собой геометрическую сумму вектора ускорения точки О, вектора нормального ускорения и вектора тангенциального ускорения относительного вращательного движения точки А вокруг точки О:

(14)

В уравнении (17) первое слагаемое равно нулю (), так как точка О является неподвижной, а третье слагаемое равно нулю, так как угловая скорость звена ОА постоянна (). Тогда уравнение (14 примет следующий вид:

Модуль ускорения точки А:

(15)

Теперь подберем масштабный коэффициент ускорений:

(16)

где - модуль ускорения точки А; - произвольно выбранный отрезок, изображающий на плане ускорений вектор ускорения точки А. Примем , тогда с учетом равенства (16)получим:


Длину отрезка, изображающего на плане ускорений вектор ускорения точки С, найдем, воспользовавшись теоремой подобия:

. (17)

Вектор ускорения точки В принадлежащей шатуну 2 представляет геометрическую сумму вектора ускорения точки А, вектора нормального ускорения и вектора тангенциального ускорения относительного вращательного движения точки В вокруг точки А:

(18)

Модуль вектора найдем по выражению:

Длина отрезка, изображающего в составе плана ускорений вектор :

(19)

В то же время точка В принадлежит и ползуну 3. Ползун 3 совершает только прямолинейное возвратно-поступательное движение вдоль направляющей ХХ, следовательно, линия действия вектора ускорения точки D проходит параллельно прямой ХХ:

Разрешив графически векторные уравнения (17,18,19), построим планы ускорений для всех найденных положений. После построения замерим для каждого плана длины отрезков

Используя найденные значения отрезков, определим модули соответствующих ускорений:

(20)

Так же, для расчетов, необходимо определить ускорения центров масс представленных звеньев. Центры масс шатунов 2, 4 и коромысла 3 считаем расположенными по середине этих звеньев. Соединив на планах ускорений точки и a , а и b ; и определив середины этих отрезков мы получим центры масс звеньев s 1 , s 2 . Проведя от точки вектора к вышеуказанным точкам мы получим соответствующие вектора ускорений центров масс. Измеряя длину этих отрезков мы сможем определить модули этих отрезков:

(21)

Определим угловые ускорения звеньев:


(22)

Угловая скорость кривошипа 1 является постоянной величиной, следовательно, угловое ускорение этого звена равно нулю, т.е. . Ползун 3 совершает только поступательные движения, следовательно, угловое ускорение этого звена тоже равно нулю, т.е. .

Таблица 3 – Нормальные составляющие ускорений

Положение м/с2 м/с2
1 1073 94,8 1076 752 753 827

Кинематический анализ успешно проведен.

Рисунок 6 – План ускорении

4. Определение сил, действующих на звенья механизма

На каждое звено плоского рычажного механизма действует сила тяжести, которая находится по формуле:


(23)

где g=9,81 м/с2 - ускорение свободного падения, а - масса i-го звена.

Для определения массы каждого звена плоского рычажного механизма воспользуемся следующими формулами:

(24)

Далее определяем силы тяжести для каждого звена плоского рычажного механизма:

(25)

Также мы можем определить силы инерции, действующие на звенья плоского рычажного механизма, по формуле:

(26)

где - масса i-го звена, а - ускорение центра масс i-го звена.

Уславливаемся, что центр масс кривошипа лежит на оси его вращения, т.к в большинстве случаев кривошип – вал механизма, т.е

Также уславливаемся, что у линейных звеньев центр масс лежит на середине звена. Значения ускорений центра масс найдены в кинематическом анализе плоского рычажного механизма. Находим силы инерции:


(27)

Определяем моменты от сил инерции:

(28)

где - момент инерции i-го звена, угловое ускорение i-го звена.

Момент инерции i-го звена:

(29)

где - масса i-го звена, - длина i-го звена.

Находим моменты от сил инерции:

Момент от сил инерции направлен противоположно направлению действию углового ускорения. Для определения углового ускорения звена необходимо на плане ускорений взять вектор тангенциальной составляющей ускорения звена и мысленно перенести его в ведомую точку звена (точка, стоящая первой в индексе), а ведущую условно остановить. Направление вращения звена при этом будет характеризовать направление углового ускорения звена.

Нанесем на построенное положение механизма все заданные внешние нагрузки. В результате, полученная картина будет являться расчетной схемой данного положения плоского рычажного механизма.


Рисунок 7 – Расчетная схема силового анализа

5. Кинетостатический метод силового анализа

В данном курсовом проекте силовой анализ мы проведем с помощью кинетостатического метода, в основе которого лежит принцип Д’Аламбера. Если к внешним силам, действующим на звенья механизма добавить силы инерции, то данный механизм будет находиться в квазистатическом состоянии. Силовой анализ этого механизма можно выполнить, используя уравнения кинетостатического равновесия:

(30)

Этот метод применяется для анализа движущихся механизмов при известных массах и моментах инерции звеньев.

Для этого разбиваем механизм на структурные группы Ассура и начинаем вычерчивать с последней группы звеньев (группы, связанной с выходным звеном).

Рисунок 6 – Структурная группа Ассура 1


Разорванную связь 1-2 заменяем реакцией R12 , раскладывая ее на составляющие и , а нормаль XX реакцией R03 . Составляем уравнение равновесия:

(31)

(32)

Уравнение равновесия (32) содержит три неизвестных , и , следовательно, его статическая неопределимость равна двум.

С целью раскрытия статической неопределимости найдем модуль.

Звено АВ:

(33)

В результате проведенных вычислений уравнение (32) содержит две неизвестных и , следовательно статическая неопределимость раскрыта полностью. Уравнение равновесия примет следующий вид:

(34)

Определение оставшихся неизвестных выполним с помощью плана сил. Для этого необходимо выбрать масштабный коэффициент плана сил:


(35)

Переведем в масштабный коэффициент оставшиеся силы:

(36)

По полученным величинам строим план сил в масштабном коэффициенте (рисунок 7).

По построенному плану сил определяем неизвестные , и :

(37)

Рассмотрим первичный механизм.

Направляем уравновешивающую силу перпендикулярно оси кривошипа, в противоположную сторону вращения оси кривошипа. Вектор выходит из подвижной точки кривошипа.

Составляем уравнение равновесия:


(38)

Составляем уравнение моментов сил относительно точки O:

(39)

Из уравнения (4.23) определяем :

Уравнение равновесия примем следующий вид:

(4.24)

Определим оставшиеся неизвестные с помощью плана сил. Для этого необходимо выбрать масштабный коэффициент сил:

Переведем в масштабный коэффициент оставшиеся силы:


По полученным данным строим план сил в масштабном коэффициенте (рисунок 8).

По построенному плану определяем неизвестную реакцию :

Метод кинетостатики силового анализа завершен.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:41:11 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
08:13:15 29 ноября 2015

Работы, похожие на Лабораторная работа: Кривошипно-ползунный механизм, его структура, схема, анализ
Основы проектирования и конструирования
Основы проектирования и конструирования Конспект лекций для студентов специальности 060800 "Экономика и управление на предприятии" Составитель ...
Отметим лишь, что широкое распространение получили графические методы кинематического исследования механизмов, позволяющие определить положения звеньев, скорости и ускорения точек ...
Для того, чтобы был понятен смысл записанных определений, рассмотрим в качестве иллюстрации планы скоростей и ускорений начального звена механизма - наиболее простой случай ...
Раздел: Промышленность, производство
Тип: учебное пособие Просмотров: 16341 Комментариев: 3 Похожие работы
Оценило: 1 человек Средний балл: 4 Оценка: неизвестно     Скачать
Расчет машинного агрегата для получения электрической энергии с ...
1. Устройство и принцип работы машинного агрегата Машинный агрегат образован последовательным соединением двигателя внутреннего сгорания (ДВС) I ...
Графический способ кинематического анализа методом кинематических диаграмм заключается в построении графиков перемещений, скоростей и ускорений от угла поворота начального звена.
Кривошип 1 совершает вращательное движение под действие сил: инерции РИ1, веса кривошипа G1, реакции в шарнирах R21 - шатуна 2 на кривошип 1, R01 - стойки 0 на кривошип 1 ...
Раздел: Промышленность, производство
Тип: курсовая работа Просмотров: 643 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Проектирование привода пресс-автомата с плавающим ползуном
ЗАДАНИЕ НА КУРСОВОЕ ПРОЕКТИРОВАНИЕ По заданным геометрическим, весовым и эксплуатационным параметрам разработать привод пресс-автомата с плавающим ...
Угловую скорость кривошипа 1 будем считать, в соответствии с исходными данными, постоянной и равной единице, так как необходимые необходимые кинематические передаточные функции ...
где VС - абсолютная скорость точки С, вектор, который перпендикулярен кулисе 5, VА- линейная скорость точки А (известная и по величине и по направлению), VСА - вектор скорости ...
Раздел: Промышленность, производство
Тип: курсовая работа Просмотров: 596 Комментариев: 3 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Анализ работы плоского рычажного механизма
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ РАДИОЭЛЕКТРОНИКИ Кафедра инженерной и компьютерной графики КУРСОВАЯ ...
Также существует главный момент инерции звена, который приложен к центру масс звена и направлен в противоположную сторону угловому ускорению звена.
В первой части курсового проекта была составлена кинематическая схемы механизма, определены скорости и ускорения точек и звеньев механизма, а также реакции в кинематических парах.
Раздел: Рефераты по коммуникации и связи
Тип: курсовая работа Просмотров: 2189 Комментариев: 3 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Проектирование и исследование механизмов двигателя внутреннего ...
положение Т2 Iпр1 L T2 L изм. Т L изм. Т1 0 339.81 0.0155 17.4 0 17.4 1 549.73 0.0251 28.2 6.5 21.7 2 977.93 0.0446 50.2 18.5 31.7 3 1153.10 0.0526 59 ...
Векторы относительных скоростей не проходят через полюс плана скоростей, если звено не совершает вращательного движения вокруг точки, принадлежащей этому звену.
По правилу подобия: фигура, образованная на плане скоростей векторами относительных скоростей, подобна соответствующей фигуре на кинематической схеме механизма и повернута ...
Раздел: Рефераты по транспорту
Тип: реферат Просмотров: 843 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Структурный, кинематический и силовой анализ механизма. Синтез ...
Министерство транспорта Российской Федерации Федеральное агентство железнодорожного транспорта Государственное образовательное учреждение высшего ...
Выполненные расчеты позволили определить скорости, ускорения, силы инерции звеньев механизма, построить планы сил для определения давлений в кинематических парах.
Для выяснения направления угловой скорости звена АВ вектор скорости , направленной к точке b плана, мысленно переносим в точку В звена 2 и определяем, что он стремится повернуть ...
Раздел: Рефераты по транспорту
Тип: курсовая работа Просмотров: 8182 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Синтез и анализ рычажного механизма
Содержание Введение 1. Синтез и анализ рычажного механизма 1.1 Структурный анализ механизма 1.2 Определение скоростей 1.3 Значения скоростей из плана ...
Угловая скорость кривошипа:
Угловые скорости и ускорения звеньев механизма определяем в 3-ем положении.
Раздел: Промышленность, производство
Тип: курсовая работа Просмотров: 699 Комментариев: 3 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Все работы, похожие на Лабораторная работа: Кривошипно-ползунный механизм, его структура, схема, анализ (3452)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150370)
Комментарии (1830)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru