Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Научная работа: Доказательство великой теоремы Ферма

Название: Доказательство великой теоремы Ферма
Раздел: Рефераты по математике
Тип: научная работа Добавлен 08:54:16 18 июня 2009 Похожие работы
Просмотров: 19 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Файл: FERMA-FIN ©Н. М. Козий, 2008

Свидетельства Украины № 27312и 28607

о регистрации авторского права

ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА

ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ НЕЧЕТНЫХ ПОКАЗАТЕЛЕЙ СТЕПЕНИ

Великая теорема Ферма формулируется следующим образом: диофантово уравнение (http://soluvel.okis.ru/evrika.html):

Аn + Вn = Сn * /1/

где n- целое положительное число, большее двух, не имеет решения в целых положительных числах A, B, С.

ДОКАЗАТЕЛЬСТВО

Доказательство строим, исходя из основной теоремы арифметики, которая называется «теоремой о единственности факторизации» или «теоремой о единственности разложения на простые множители целых составных чисел». Возможны нечетные и четные показатели степени n. Рассмотрим случай, когда показатель степени n- нечетное число. В этом случае выражение /1/ преобразуется по известным формулам следующим образом:

Аn + Вn = Сn = (A+B)[An-1 -An-2 ·B +An-3 ·B2 - …-A·Bn-2 +Bn-1 ] /2/

Полагаем, что Aи B – целые положительные числа.

Из уравнения /2/ следует, что при заданных значениях чисел Aи Bмножитель (A+B) имеет одно и тоже значение при любых значениях показателя степени n.

* Числа А, В и С должны быть взаимно простыми числами.

Уравнение /2/ действительно при любом нечетном значении показателя степени n. Следовательно, из уравнения /1/ при n =1 имеем:

А1 + В1 = С1

А + В= С/3/

Следовательно, число (А + В) является делителем числа С.

Допустим, что число С - целое положительное число. Тогда с учетом принятых условий и основной теоремы арифметики должновыполняться условие:

Сn = An + Bn =(A+B)n ∙ Dn , /4/

где число Dтакже должно быть целым числом.

Из уравнения /4/ следует:

/5/

Из уравнения /4/ также следует, что число [Cn =An + Bn ] при условии, что число С – целое число, должно делиться на число (A+B)n . Однако известно, что:

An + Bn < (A+B)n /6/

Следовательно:

- дробное число, меньшее единицы. /7/

- дробное число.

Отсюда следует, что при нечетном значении показателя степени nуравнение /1/ великой теоремы Ферма не имеет решения в целых положительных числах.

Таким образом, великая теорема Ферма не имеет решения в целых положительных числах при нечетном показателе степени n >2.

ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ ЧЕТНЫХ ПОКАЗАТЕЛЕЙ СТЕПЕНИ

Доказательство строим аналогично вышеизложенному доказательству для нечетных показателей степени. Любое четное число, за исключением числа p=2q , является произведением числа p на нечетные, простые или составные, числа. Следовательно, четный показатель степени можно записать следующим образом:

n= pkm = 2q ∙km, /8/

где: p=2q ;

q =1, 2, 3,…;

k =1,3,5,7,9,…;

m=3,5,7,9,11,…

Тогда уравнение /1/ можно записать следующим образом:

Сn = An + Bn =Apkm + Bpkm = (Apk )m + (Bpk )m /9/


Поскольку показатель степени m– нечетное число, то алгебраическое выражение /9/ преобразуется аналогично уравнению /2/ следующим образом:

Cn = Cpkm = (Apk + Bpk )∙[ (Apk )m -1 - (Apk )m -2 ∙Bpk +

+ (Apk )m -3 ∙(Bpk )2 -…- Apk ∙(Bpk )m -2 + (Bpk )m -1 ] /10/

При этом уравнения /4/ и /5/ преобразуются следующим образом:

Cn = Cpkm = (Apk + Bpk )m ∙ Dpkm /11/

Dpkm = (Apkm + Bpkm ) / (Apk + Bpk )m /12/

В соответствии с уравнением /6/:

(Apkm + Bpkm ) < (Apk + Bpk )m /13/

Следовательно, число Dpkm – дробное число, меньшее единицы.

Отсюда следует, что и при четном показателе степени n= 2q ∙kmуравнение /1/ не имеет решения в целых положительных числах.

Таким образом, великая теорема Ферма не имеет решения в целых положительных числах, как при нечетном, так и при четном показателе степени n >2 и не равном n ≠2q .

Для показателя степени n =2q существует иное доказательство великой теоремы Ферма.

Автор: Николай Михайлович Козий,

инженер-механик

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений08:22:59 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
08:08:04 29 ноября 2015

Работы, похожие на Научная работа: Доказательство великой теоремы Ферма

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(149985)
Комментарии (1829)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru