Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: История математических констант - числа "пи" и "е"

Название: История математических констант - числа "пи" и "е"
Раздел: Рефераты по математике
Тип: реферат Добавлен 13:01:17 02 декабря 2010 Похожие работы
Просмотров: 15618 Комментариев: 9 Оценило: 16 человек Средний балл: 3.9 Оценка: 4     Скачать

Введение

Числа много тысячелетий назад вошли в жизнь и быт людей. Человек их использует не только при счёте и вычислениях, он придумал различные игры с числами и шарады. Некоторые числа наделил сверхъестественными свойствами, например, такие как 13, 666. Среди бесконечного множества действительных чисел существуют ещё особенные, и не только для математиков, числа p и е . Эти числа имеют свои собственные обозначения, так как их нельзя записать точно с помощью цифр. Числа 3,14 и 2,7 лишь одни из приближённых значений чисел π и е. Эти числа являются иррациональными и трансцендентными, для их точного определения не хватило бы и триллиона десятичных знаков.

"Математиками изучены последовательности цифр е и p, и выяснено, что все цифры в этом числе встречаются с одинаковой частотой". Эти числа могут заворожить своей непокорностью, в особенности p. "Этому числу удавалось в течении тысячелетий держать в плену мысли и чувства не только математиков и астрономов, но и философов и художников". Тратились годы для вычисления нескольких десятичных знаков числа p.

История числа p

"Письменная история числа p начинается с египетского папируса, датируемого примерно 2000 годом до нашей эры, но оно было известно еще древним людям. Число p обратило на себя внимание людей ещё в те времена, когда они не умели письменно излагать ни своих знаний, ни своих переживаний, ни своих воспоминаний. С тех пор как первые натуральные числа 1,2,3,4,… стали неразлучными спутниками человеческой мысли, помогая оценивать количества предметов либо их длины, площади или объёмы, люди познакомились с числом p. Тогда оно ещё не обозначалось одной из букв греческого алфавита и его роль играло число 3. Нетрудно понять, почему числу p уделяли так много внимания. Выражая величину отношения между длиной окружности и её диаметром, оно появилось во всех расчётах связанных с площадью круга или длиной окружности". Но уже в глубокой древности математики довольно быстро и не без удивления обнаружили, что число 3 не совсем точно выражает то, что теперь известно как число пи. Безусловно, к такому выводу могли прийти только после того, как к ряду натуральных чисел добавились дробные или рациональные числа. Так египтяне получили результат: В дальнейшем Архимед, используя метод верхних и нижних приближений, получает следующие границы числа пи. Индусы в V-VI веках пользовались числом , китайцы - числом

"Обозначение числа p происходит от греческого слова ("окружность"). Впервые это обозначение использовал в 1706 году английский математик У. Джонс, но общепринятым оно стало после того, как его (начиная с 1736 года) стал систематически употреблять Леонард Эйлер". В конце 18 века И. Ламберт и А. Лежандр установили, что p иррациональное число, а в 1882 году Ф. Лидерман доказал, что оно трансцендентное, т.е. не может удовлетворять никакому алгебраическому уравнению с целыми коэффициентами.

На протяжении всего существования числа p, вплоть до наших дней, велась своеобразная "погоня" за десятичными знаками числа p. Леонардо Фибоначи около 1220 года определил три первых точных десятичных знаков числа p. В 16 веке Андриан Антонис определил 6 таких знаков. Франсуа Виет (подобно Архимеду), вычисляя периметры вписанного и описанного 322216-угольников, получил 9 точных десятичных знаков. Андриан Ван Ромен таким же способом получил 15 десятичных знаков, вычисляя периметры 1073741824-угольников. Лудольф Ван Кёлен, вычисляя периметры 32512254720-угольников, получил 20 точных десятичных знаков. Авраам Шарп получил 72 точных десятичных знаков числа p. В 1844 году З. Дазе вычисляет 200 знаков после запятой числа p, в 1847 году Т. Клаузен получает 248 знаков, в1853 Рихтер вычисляет 330 знаков, в том же 1853 году 440 знаков получает З. Дазе и в этом же году У. Шенкс получает 513 знаков. "С появлением ЭВМ количество верных знаков десятичных знаков резко возрастает:

1949 год - 2037 десятичных знаков (Джон фон Нейман, ENIAC), 1958 год - 10000 десятичных знаков (Ф. Женюи, IBM-704), 1961 год - 100000 десятичных знаков (Д. Шенкс, IBM-7090), 1973 год - 10000000 десятичных знаков (Ж. Гийу, М. Буйе, CDC-7600), 1986 год - 29360000 десятичных знаков (Д. Бейли, Cray-2), 1987 год - 134217000 десятичных знаков (Я. Канада, NEC SX2), 1989 год - 1011196691 десятичных знаков (Д. Гудновски и Г. Гудновски, Cray-2+IBM-3040)"

При вычислении верных десятичных знаков числа p пользовались различными способами, некоторые, как и Архимед вычисляли периметры вписанных и описанных n-угольников, но позднее стали прибегать к помощи рядов.

Так Лейбниц вычислял с помощью ряда:

Шарп применил ряд:

Л. Эйлер с помощью ряда:

З. Дазе использовал ряд.

Джон Валлис (1616-1703) нашёл бесконечное произведение, с помощью которого можно вычислить число пи:

Определение числа p

Теорема: Отношение длины окружности к её диаметру одинаково для всех окружностей.

Доказательство.

Обозначим через L - длину окружности, через d - её диаметр, то формулировка теоремы запишется следующим образом: Рассмотрим правильный n -угольник, вписанный в окружность радиуса r со стороной аn и периметром Рn , то Докажем, что отношение одинаково для всех окружностей. Рассмотрим две произвольные окружности с вписанными в них правильными n -угольниками. Из подобия треугольников АОВ и А1 О1 В1 следует, что т.к. окружности брали произвольные, то это равенство будет справедливо для всех окружностей. Итак, для всех окружностей, следовательно Это отношение длины окружности к её диаметру принято обозначать греческой буквой "p".

Определение: Числом p называется отношение длины окружности к её диаметру.

История числа е

Число появилось сравнительно недавно. Его иногда называют "неперовым числом" в честь изобретателя логарифмов шотландского математика Джона Непера (1550-1617), однако необоснованно, так как нет твёрдых оснований для утверждения, что Непер имел о числе е чёткое представление" [10]. Впервые обозначение "е " ввёл Леонард Эйлер (1707-1783). Он также вычислил точные 23 десятичные знака этого числа, использовав представление числа е в виде бесконечного числового ряда: полученное Даниилом Бернули (1700-1782). "В 1873 году Эрмит доказал трансцендентность числа е .Л. Эйлер получил замечательный результат, связывающий числа е , p, и: . Ему принадлежит и заслуга определения функции для комплексных значений z , что положило начало математическому анализу в комплексной области - теории функций комплексного переменного" [10]. Эйлером были получены следующие формулы: Рассматривают логарифмы по основанию е , называемые натуральными и обозначаются Lnx .

Способы определения

Число e может быть определено несколькими способами.

Через предел:

(второй замечательный предел) .

Как сумма ряда:

или .

Как единственное число a , для которого выполняется

Как единственное положительное число a , для которого верно

Свойства

Данное свойство играет важную роль в решении дифференциальных уравнений. Так, например, единственным решением дифференциального уравнения является функция , где c - произвольная константа.

Число e иррационально и даже трансцендентно. Это первое число, которое не было выведено как трансцендентное специально, его трансцендентность была доказана только в 1873 году Шарлем Эрмитом. Предполагается, что e - нормальное число, то есть вероятность появления разных цифр в его записи одинакова.

, см. формула Эйлера, в частности

Ещё одна формула, связывающая числа е и π , т. н. "интеграл Пуассона" или "интеграл Гаусса"

Для любого комплексного числа z верны следующие равенства:

Число e разлагается в бесконечную цепную дробь следующим образом:

, то есть

Представление Каталана:

История

Данное число иногда называют неперовым в честь шотландского учёного Непера, автора работы "Описание удивительной таблицы логарифмов" (1614 год). Однако это название не совсем корректно, так как у него логарифм числа x был равен

.

Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 году. Негласно, потому что там содержится только таблица натуральных логарифмов, определённых из кинематических соображений, сама же константа не присутствует (см.: Непер).

Предполагается, что автором таблицы был английский математик Отред.

Саму же константу впервые вычислил швейцарский математик Бернулли при анализе следующего предела:

Первое известное использование этой константы, где она обозначалась буквой b , встречается в письмах Лейбница Гюйгенсу, 1690-1691 годы.

Букву e начал использовать Эйлер в 1727 году, а первой публикацией с этой буквой была его работа "Механика, или Наука о движении, изложенная аналитически" 1736 год. Соответственно, e обычно называют числом Эйлера . Хотя впоследствии некоторые учёные использовали букву c , буква e применялась чаще и в наши дни является стандартным обозначением.

Почему была выбрана именно буква e , точно неизвестно. Возможно, это связано с тем, что с неё начинается слово exponential ("показательный", "экспоненциальный"). Другое предположение заключается в том, что буквы a , b , c и d уже довольно широко использовались в иных целях, и e была первой "свободной" буквой. Неправдоподобно предположение, что Эйлер выбрал e как первую букву в своей фамилии (нем. Euler ) [источник не указан 334 дня ] .

Мнемоника

Приблизительное значение зашифровано в: "Мы порхали и блистали, но застряли в перевале; не признали наши крали авторалли" (нужно выписать подряд цифры, выражающие число букв в словах следующего стишка, и поставить запятую после первого знака)

Запомнить как 2,7 и повторяющиеся 18, 28, 18, 28.

Мнемоническое правило: два и семь, далее два раза год рождения Льва Толстого (1828), затем углы равнобедренного прямоугольного треугольника (45 , 90 и 45 градусов). Стихотворная мнемофраза, иллюстрирующая часть этого правила: "Экспоненту помнить способ есть простой: две и семь десятых, дважды Лев Толстой"

Цифры 45, 90 и 45 можно запоминать как "год победы над фашистской Германией, затем дважды этот год и снова он"

Правила e связывается с президентом США Эндрю Джексоном: 2 - столько раз избирался, 7 - он был седьмым президентом США, 1828 - год его избрания, повторяется дважды, поскольку Джексон дважды избирался. Затем - опять-таки равнобедренный прямоугольный треугольник.

С точностью до трёх знаков после запятой через "число дьявола": нужно разделить 666 на число, составленное из цифр 6 − 4, 6 − 2, 6 − 1 (три шестёрки, из которых в обратном порядке удаляются три первые степени двойки):

.

Запоминание e как .

Грубое (с точностью до 0,001), но красивое приближение полагает e равным . Совсем грубое (с точностью 0,01) приближение даётся выражением .

"Правило Боинга": даёт неплохую точность 0,0005.

Стишки:

Два и семь, восемнадцать,

Двадцать восемь, восемнадцать,

Двадцать восемь, сорок пять,

Девяносто, сорок пять.

Доказательство иррациональности

Предположим, что рационально. Тогда , где - целое, а - натуральное и больше 1, т.к. - не целое. Следовательно

Умножая обе части уравнения на , получаем

Переносим в левую часть:

Все слагаемые правой части целые, следовательно:

- целое

Но с другой стороны

Получаем противоречие.

Интересные факты

В IPO компании Google в 2004 году было объявлено о намерении компании увеличить свою прибыль на 2 718 281 828 долларов. Заявленное число представляет собой первые 10 цифр известной математической константы.

В языках программирования символу e в экспоненциальной записи чисел соответствует число 10, а не Эйлерово число. Это связано с историей создания.

Ссылки:

История числа e (англ.)

e for 2.71828… (англ.) (история и правило Джексона)

Горобец, Борис Соломонович. Мировые константы в основных законах физики и физиологии // Наука и жизнь . - 2004. - № 2. - статья с примерами физического смысла констант π и e.

Числа с собственными именами

Если мы вспомним, что число е = 2,718281828., то увидим, что основание логарифмов Бюрги отличается от числа е только начиная с четвертого десятичного знака. Иоганн Кеплер, понимавший огромное значение таблиц Бюрги для вычислений, настойчиво рекомендовал ему опубликовать свой метод ко всеобщему сведению, но Бюрги медлил, и получилось так, что в печати раньше появились таблицы логарифмов другого автора. Таблицы Бюрги были изданы в 1620 г., а на 6 лет раньше (в 1614 г.) Джон Непер опубликовал составленные им таблицы под названием "Описание удивительной таблицы логарифмов". Шотландский барон Джон Непер (1550-1617) тоже не был специалистом-математиком. Он делил свои интересы между многими отраслями знания, причем главным образом занимался вопросами, имевшими непосредственное приложение к жизни. Так, он изобрел несколько сельскохозяйственных машин, а также некоторые военные приборы. В области математики Непер интересовался главным образом вопросами вычислительного характера, отыскивая способы для облегчения счета. Так, в сочинении "Рабдология", изданном в год его смерти, он описывает свой прибор, который в наше время носит название "неперовы палочки" и служит хорошим методическим пособием в школе. Этот прибор состоит из десяти основных палочек, на которых помещена таблица умножения. Левая палочка неподвижна, а все остальные могут менять свои места. В каждом квадратике таблицы проведены диагонали, причем в нижней части квадратика помещаются единицы частных произведений таблицы умножения, а в верхней - десятки. При помощи прибора Непера можно производить умножение и деление чисел, причем умножение заменяется сложением, а деление вычитанием. Если, например, нужно умножить число 684 на 4, то для этого ставим рядом палочки, имеющие сверху числа 6, 8 и 4, и обращаем внимание на клетки этих палочек, стоящие в одной строке с 4.

Список литературы

1. Бохан К.А. и др. Курс математического анализа т. II. - М.: Просвещение 1972.

2. Кымпан Ф. История числа p. - М.: Наука, Гл. ред. физ.-мат. лит., 1987.

3. Райк А.Е. Очерки по истории математики в древности. - Саранск, 1987.

4. Фихтенгольц Г.М. Основы математического анализа т. I, II. - М.: Государственное издательство технико-теоретической литературы, 1956.

5. Болтянский В. Экспонента. // Квант, 1984 №3.

6. Звонкин А. Что такое p // Квант, 1978 №11.

7. Кузьмин Е., Ширшов А. О числе е. // Квант, 1979 №8.

8. Калейдоскоп Число p. // Квант, 1996 №6.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений08:12:07 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
08:02:55 29 ноября 2015
ету букву знает весь свет
настюха17:52:22 17 декабря 2012Оценка: 5 - Отлично
а ме сообщение что я понял надо написать норм даже очень
19:15:04 16 мая 2012Оценка: 5 - Отлично
я не понял
саске17:30:09 29 января 2012Оценка: 2 - Плохо

Смотреть все комментарии (9)
Работы, похожие на Реферат: История математических констант - числа "пи" и "е"
Особенности развития одарённых детей в процессе обучения математике в ...
Содержание Введение Глава 1. Психолого-педагогические основы развития одарённых учащихся в процессе обучения математике § 1. Понятия "одаренность" и ...
Дана 100-клеточная таблица, заполненная цифрами (графическими изображениями, геометрическими фигурами разной формы и двух цветов, с набором букв).
Между некоторыми цифрами 1, 2, 3, 4, 5 поставить знаки действий и скобки так, чтобы значение выражения было равно 40.
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 21193 Комментариев: 3 Похожие работы
Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать
Вычислительная математика
Содержание Введение Тема 1. Решение задач вычислительными методами. Основные понятия 1.1 Погрешность 1.2 Корректность 1.3 Вычислительные методы Тема 2 ...
Нетрудно убедиться, что корень уравнения находится на отрезке [p/6, p/3]. Например, вычислив значения f(x) на концах отрезка, получим: f(p/6)> 0, а f(p/3)< 0, т. е. функция на ...
Используя правило Рунге, можно построить процедуру приближенного вычисления решения задачи Коши модифицированными методами Эйлера с заданной точностью e. Нужно, начав вычисления с ...
Раздел: Рефераты по математике
Тип: учебное пособие Просмотров: 4554 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Психолого-педагогическое обоснование внеклассной работы по математике
Содержание Введение. 2 1. Психолого-педагогическое обоснование внеклассной работы по математике 4 2. Внеклассная работа как одно из направлений ...
II. что первоначально означало слово "математика"? (знание, наука). вычислите: (-3)+(-2)+(-1)+.+3+4= ? (4).
III. от какого слова происходит название цифры нуль? (от латинского "нума" - пусто). вычислите: (-2) х (-1) х 0 х .х 3= ? (0).
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 6457 Комментариев: 2 Похожие работы
Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать
Общая и неорганическая химия
Квантово-механическая модель атома. Квантовые числа. Атомные орбитали. Порядок заполнения орбиталей электронами Теория строения атома основана на ...
Э. определяется через логарифм статистического веса W данного равновесного состояния S= k ln W (E, N), (7) где k - Больцмана постоянная, W (E, N) - число квантовомеханических ...
... не абсолютными значениями концентраций, а взятыми с обратными знаком их десятичными логарифмами - соответственно, водородным показателем (pH) и гидроксильным показателем (pOH) ...
Раздел: Рефераты по химии
Тип: учебное пособие Просмотров: 14362 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Высшая математика для менеджеров
ПРЕДИСЛОВИЕ Учебное пособие "Высшая математика для менеджеров" включает такие разделы высшей математики, изучение которых дает математический аппарат ...
где e " 2.7 - основание натурального логарифма.
Поскольку (1 + i/m) m = e i, то `S = P e in.
Раздел: Рефераты по математике
Тип: дипломная работа Просмотров: 2148 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Теория информации
Лекции по Теории информации Подготовил В.С. Прохоров Содержание Введение 1. Понятие информации. Задачи и постулаты прикладной теории информации 1.1 ...
Часто используются двоично-десятичные коды, в которых цифры десятичного номера буквы представляются двоичными кодами.
К результату суммирования р первых разрядов прибавляется цифра очередного поступающего разряда (i + 1), находится результат суммирования (i + 1) разрядов p = p = а, и так до тех ...
Раздел: Рефераты по информатике, программированию
Тип: учебное пособие Просмотров: 7667 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Рекурсия
Нужно быть очень терпеливым, чтобы научиться терпению. Е. Лец Нельзя говорить нельзя. Д. Араго Введение Полезность, важность и необходимость рекурсии ...
Мы видим, что уже е(5) " e с точностью до 9 знаков после десятичной точки, а начиная с e(8) уже все 15 знаков после точки верные.
Не ограничивая общности речь можно вести о неотрицательных числах.Пусть pI{2,3,.} и цифры p-ичной системы - это последовательные десятичные числа:
Раздел: Рефераты по экономико-математическому моделированию
Тип: дипломная работа Просмотров: 2414 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Все работы, похожие на Реферат: История математических констант - числа "пи" и "е" (4376)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151311)
Комментарии (1844)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru