Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Курсовая работа: Гомеостаз и поведение животных

Название: Гомеостаз и поведение животных
Раздел: Рефераты по биологии
Тип: курсовая работа Добавлен 16:19:28 06 августа 2009 Похожие работы
Просмотров: 437 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Гомеостаз и поведение животных

Содержание

Введение

1. Гомеостаз

2. Терморегуляция

3. Водный баланс

4. Энергия и питательные вещества

5. Мотивационные системы

6. Мотивационное состояние

Введение

Понятие физиологической стабильности неотделимо от концепции Клода Бернара о внутренней среде. Он установил, что уровень сахара в крови остается постоянным независимо от того, голодало животное, только что получало мясо или потребляло корм, содержащий сахар. Он постулировал наличие некоторого процесса регуляции и контроля для поддержания постоянства внутренней среды. Он понимал также, что животное, способное регулировать свою внутреннюю среду при колебаниях внешней среды, способно использовать большее разнообразие потенциальных местообитаний.

Животных можно приблизительно разделить на конформеров, допускающих влияние на свою внутреннюю среду внешних факторов, и на регуляторов, которые удерживают ее в состоянии, в значительной степени независимом от внешних условий. Процессы, посредством которых регуляторы управляют своим внутренним состоянием, объединяются термином гомеостаз.

1. Гомеостаз

Этот термин впервые был применен американским физиологом Кэнноном, который писал: "Координированные физиологические процессы, которые поддерживают большую часть устойчивых состояний в организме, так сложны и настолько специфичны для живых существ, поскольку могут включать совместную работу головного мозга и нервов, сердца, легких, почек и селезенки, - что я предложил специальное название для этих состояний, а именно гомеостаз". Кэннон рассмотрел ситуацию, в которой сенсорные процессы, следящие за внутренним состоянием организма, вызывают соответствующее действие, как только внутреннее состояние отклонялось от заданного или оптимального. Так, например, когда температура человеческого тела поднимается выше 37 С, вступают в действие такие охлаждающие механизмы, как прилив крови к коже и потоотделение. Когда температура падает ниже оптимального уровня, включаются согревающие механизмы, например дрожь. Пользуясь множеством таких тонко настроенных механизмов, человек достигает точной терморегуляции и теплового гомеостаза.

Хотя типы регуляторных механизмов, рассмотренные Кэнноном, как теперь известно, широко распространены в животном мире и включают самые разнообразные физиологические процессы, в регуляции внутренней среды участвуют не только они. Так, например, до недавнего времени считали, что животные усиленно пьют при высокой окружающей температуре в результате обезвоживания, которое возникает при таких охлаждающих реакциях, как потоотделение и одышка. Эта точка зрения полностью соответствует изложенной выше теории гомеостаза: испарение воды необходимо для поддержания теплового гомеостаза в жаркой среде, а это нарушает в организме водный баланс, восстановление которого требует усиленного питья. Однако теперь мы знаем, что у таких видов, как крыса и голубь, питье прямая реакция на температурное изменение, опережающая любое нарушение водного баланса в результате терморегуляции, а не ответ на нарушение.

Как считает регуляторная теория. Иными словами, животные пьют, чтобы запастись водой для терморегуляции. Роль поведения в регуляции внутренней среды значительно отличается у разных видов и зависит от обстоятельств. Питье, например, нужно для поддержания гомеостаза у многих видов, так как физиологические механизмы не могут защитить их от гибели в результате обезвоживания после длительного лишения воды. Но некоторые виды, например монгольская песчанка и волнистый попугайчик, выживают без воды неограниченное время. Благодаря большой эффективности своих сохраняющих воду механизмов они могут жить, пользуясь влагой, содержащейся в поедаемых семенах. Другие виды, например водные, не нуждаются в особом поведении для получения воды, необходимой для поддержания гомеостаза.

Во многих случаях роль поведения в поддержании гомеостаза в норме ничтожна. Однако опыты с хирургическим вмешательством, нарушающим нормальные физиологические механизмы гомеостаза, показывают, что животные часто способны к соответствующему поведению, даже если не пользуются им в обычной жизни. Так, в работе Рихтера показано, что, если нарушить тепловой гомеостаз у крыс, удалив у них щитовидную железу, животные реагируют сооружением более теплых гнезд и другими формами поведенческой терморегуляции, возможными в условиях эксперимента. Точно так же удаление надпочечников, участвующих в поддержании солевого баланса, заставляет крыс предпочитать более соленую пищу и воду.

В других случаях участие в гомеостатических реакциях специальных органов необязательно. Так, крысы, содержащиеся на диете с недостатком витаминов, способны выбирать пищу с нужным их содержанием, хотя и не могут узнавать по вкусу о наличии витаминов в корме. Они способны научиться распознавать пищу, при которой чувствуют себя лучше. Ясно, что механизмов поддержания внутренней стабильности много и они разные, поэтому неправильно думать, что гомеостаз обязательно предполагает простой регуляторный процесс типа обратной связи. Кроме того, неверно считать, что гомеостаз означает просто постоянство внутренней среды. Между конформерами и регуляторами существует много промежуточных форм, причем вид может быть способен регулировать одну функцию организма и не способен регулировать другие. Это хорошо видно на примере терморегуляции у животных.

2. Терморегуляция

Для большинства животных существует оптимальная температура тела, при которой они функционируют наиболее эффективно. Ниже этой температуры их метаболизм постепенно замедляется, мышечная активность уменьшается и животное становится вялым. Выше оптимальной температуры метаболизм быстро усиливается, и для сохранения его нужного уровня могут потребоваться слишком большие затраты. Кроме того, существует верхний температурный предел жизнеспособности организма. Для большинства видов этот предел, по-видимому, близок к 47°С.

Большинство животных способно до некоторой степени влиять на температуру тела с помощью специальных физиологических механизмов или соответствующего поведения. В обоих случаях животному необходимо определять внешнюю температуру, температуру своего тела или обе сразу при помощи различных сенсорных процессов, составляющих так называемую терморецепцию .

Метаболические реакции организма непрерывно производят тепло, и чем активнее животное, тем больше образуется у него тепла. Однако иногда в холодной внешней среде калорий, получаемых от нормального метаболизма и активности, недостаточно для противодействия холоду, и тогда животное может производить дополнительное тепло, усиливая метаболизм, и принимать меры, снижающие потери тепла телом. Многие беспозвоночные холоднокровны в том смысле, что температура их тела соответствует температуре окружающей среды. Поскольку интенсивность метаболических реакции определяется температурой, при которой они протекают, такие животные вынуждены снижать активность, когда температура тела падает. Однако у некоторых беспозвоночных, например у мокрицы Porcellio scaber и многоножек. падение температуры стимулирует дополнительную активность, и таким образом они способны поддерживать более высокую температуру тела, чем температура среды. У теплокровных животных образование калорий можно интенсифицировать, усилив мышечную активность, например дрожью, и прямым воздействием тиреоидных гормонов на интенсивность метаболизма. Прием пищи тоже может усиливать образование тепла, так как оно выделяется при пищеварении. В холодных условиях многие животные усиленно потребляют пищу.

Животных, получающих тепло главным образом из внешних источников, например от солнца, обычно называют экзотермными, а использующих преимущественно энергию внутренних процессов, - эндотермными.

Экзотермные животные иногда усиливают свое нагревание солнечными лучами, меняя окраску, поскольку темные объекты поглощают больше лучистой энергии, чем светлые. Некоторые виды ящериц способны менять окраску в соответствии со своими тепловыми потребностями. Например, пустынная игуана

Dipsosaurus dorsalis имеет темную окраску ранним утром, когда температура тела низкая, но постепенно бледнеет по мере повышения его температуры, достигая средней стадии изменения окраски приблизительно при 40°С. Подобным же образом некоторые черепахи, чтобы получить больше тепла, выставляют на солнце свои черные лапы.

Метаболические реакции непрерывно генерируют тепло, и животные легко перегреваются, особенно когда они активны. Перегревание также легко наступает в особо жаркой среде или когда нарушено отведение тепла. Поскольку летальная температура тела у многих животных не намного выше нормальной, охлаждающие механизмы должны быть особенно быстрыми и эффективными.

Тело теряет тепло четырьмя главными способами: проводимостью, конвекцией, излучением и испарением.

Проводимость , или теплопроводность, - это перенос тепла между областями с различной температурой в твердых и жидких телах. Она может иметь место в тканях организма или между ними и внешним объектом, например почвой. Проводимость может быть снижена теплоизоляцией, создаваемой слоями жира внутри тела, и воздухом, удерживаемым волосяным или перьевым покровом на поверхности тела.

Конвекция - это перенос тепла в текучей среде. Тепло теряется вследствие притока теплой крови из внутренней части тела к более холодным поверхностным тканям. Таким образом, направление кровотока на периферию служит важным средством терморегуляции.

Излучение - это форма передачи тепла, не зависящая от теплоносителя и происходящая даже в вакууме. Потеря тепла при излучении приблизительно пропорциональна разнице температур между животным и средой.

За счет излучения тепло и приобретается, и теряется, причем окраска животного мало влияет на потерю тепла, но, как было сказано, важна для его приобретения. Так, черные животные поглощают больше солнечного тепла, чем белые, которые сильнее отражают свет.

Испарение воды с влажных поверхностей тела животного связано с затратой тепла и у многих видов служит важным способом охлаждения.

Разные виды способны регулировать количество отдаваемого тепла этими четырьмя способами в разной степени. Отчасти они регулируют потери тепла за счет проводимости, меняя свою теплоизоляцию. Долговременная регуляция может осуществляться усилением отложения жира и роста шерсти зимой и замедлением этих процессов летом.


Рис.1. Движение перьев у египетской горлицы при внезапном повышении окружающей температуры и после выпивания 10 см3 холодной воды. Учитывается среднее положение перьев по всей поверхности тела. Кривые а, 6, в, г - реакции на питье с разной скоростью.

Кратковременных изменений животные достигают, взъерошивая или укладывая шерсть и перья, чем регулируется количество удерживаемого в них воздуха, а также меняя положение тела в зависимости от погоды. На поверхностную теплоизоляцию влияют ветер и влажность. Влажная шерсть повышает теплопотери за счет проводимости. Когда млекопитающее лежит или сидит на земле, шерсть уплотняется и содержит меньше воздуха. Тепло в этом случае уходит в почву, в особенности если она влажная. Часто можно видеть, как перед дождем коровы опускаются на землю для отдыха, сохраняя при этом тепло, которое было бы потерянным через некоторое время - когда земля станет влажной. Некоторые животные могут усиливать излучение тепла с помощью поведенческих средств. Так, некоторые манящие крабы, суслики и другие роющие животные в жаркую погоду периодически прячутся в своих прохладных норах, где перегретое тело может охлаждаться путем теплоизлучения. Эффективную поверхность тела можно уменьшить, свернувшись клубком или сбившись в кучу с другими особями того же вида, что снижает потери тепла за счет излучения.

Испарение воды через кожу не контролируется у амфибий, рептилий и птиц; у млекопитающих оно регулируется потовыми железами, которыми обладают все высшие млекопитающие, кроме грызунов и зайцеобразных. У человека функционирование потовых желез на ладонях находится под контролем эмоций, а на остальной поверхности тела они в норме реагируют на терморегуляцию. Потоотделение контролируется терморецепторами в головном мозгу, а не в коже. Так, люди обычно потеют при физической работе, но не обязательно, когда сидят у жаркого огня. Крысы и некоторые другие животные усиливают охлаждающее испарение, увлажняя поверхность тела слюной или смачивая себя водой, как это делают слоны. Испарение через дыхание у большинства животных до некоторой степени регулируется. Крокодилы, змеи и некоторые ящерицы в жару широко раскрывают пасть. Пустынная игуана Dipsosaurus учащает дыхание подобно собаке. Из-за того что животные при респираторном испарении теряют очень много воды, они прибегают к нему только в крайних случаях. Птицы и млекопитающие учащают дыхание, только когда температура тела приближается к летальному уровню. Птицы в полете генерируют много тепла и для рассеяния его используют главным образом респираторное испарение. У верблюда не бывает тепловой одышки, но он охлаждается, излучая тепло ночью. Верблюды запасают не так много воды, чтобы позволить себе тратить ее для охлаждения.

Рис.2. При обезвоживании температура тела у верблюдов днем повышается, так что им не приходится тратить воду на терморегуляцию. Холодной пустынной ночью верблюд теряет избыток тепла, накопленный днем.

Экзотермные животные способны регулировать температуру тела только в ограниченной степени. У амфибий тело остается прохладным благодаря испарению воды с его поверхности. Леопардовая лягушка может сохранять температуру тела 36,8° С при температуре окружающей среды 50°С. У пресмыкающихся способность к самоохлаждению более ограничена, и они стремятся избегать очень жарких мест. Намибская песчаная ящерица зарывается в песок, когда полуденная температура превышает 40°C.

Истинным тепловым гомеостазом обладают птицы н млекопитающие, которые являются эндотермными. способными сохранять постоянную температуру тела, несмотря на флуктуации окружающей температуры. Высокая интенсивность их метаболизма создает внутренний источник тепла, а покровы препятствуют его неконтролируемому рассеянию. У птиц и млекопитающих температура тела обычно выше окружающей. Головной мозг получает информацию о температуре тела и может контролировав механизмы согревания и охлаждения. Когда температура мозга становится слишком высокой, активируются механизмы охлаждения, а если она падает слишком низко, теплопотери уменьшаются и вступают в действие механизмы согревания. Этот принцип обратной связи такой же, как у термостатически регулируемого электрического нагревателя.

Тонкий контроль температуры тела происходит у человека с его системой раннего предупреждения, состоящей из множества терморецепторов в коже. На основе получаемой от них информации людиспособны принимать предварительные меры, не допуская излишних колебаний температуры тела. Контролируемые изменения температуры у птиц и млекопитающих все же происходят, часто в зависимости от времени суток. У человека средняя температура тела равна 36.7° С рано утром и 37.5° C в конце дня. Многие эндотермные животные допускают некоторые колебания внутренней температуры, вероятно, ради сохранения энергии.

3. Водный баланс

Все животные нуждаются в воде для поддержания метаболических процессов.

Рис.3. Ящерица Aporosaura живет на песчаных дюнах, на поверхности которых температура заметно колеблется. При слишком низкой или слишком высокой температуре ящерица зарывается в песок. Обычно это означает один период активности на поверхности утром и еще один - после полудня. Активные периоды обозначены серыми прямоугольниками.

Они постоянно теряют воду множеством разных способов, включая экскрецию и испарение с поверхности тела. Вода в теле безпозвоночных распределена между различными компартментами. Потери происходят из кровеносных сосудов. Например, в легких вода теряется за счет испарения. Они пронизаны густой сетью капилляров, а газообмен происходит через тонкие мембраны, смоченные плазмой, в которой растворяются газы. Выдыхаемый воздух почти всегда содержит воды больше, чем вдыхаемый, и эта вода поступает из сосудистого русла. Как уже говорилось, у многих животных испарение при дыхании - существенный способ охлаждения; в частности, для птиц оно очень важно во время полета. Терморегуляция, при которой происходит потоотделение или смачивание тела слюной, тоже требует расхода воды.

Почки фильтруют плазму крови, удаляют из нее ненужные вещества и выделяют их с мочой. Следовательно, потеря некоторого количества воды при экскреции неизбежна, но, как мы увидим, здесь возможна также известная экономия. Вода теряется также во время дефекации, но при дефиците воды многие животные реабсорбируют воду из тонкого кишечника и выделяют очень сухой кал. Потеря воды из кровеносных сосудов приводит ее к некоторому перераспределению между всеми компартментами тела, но в конечном счете недостающая вода должна быть возмещена.

Большинство животных получают воду во время питья, но амфибии и некоторые насекомые поглощают ее кожей. Ряд животных, особенно редко встречающих воду, способны выпивать ее в огромных количествах. В то время как человек при сильной жажде может выпить один литр воды за минуту и, возможно, три литра за десять минут, один верблюд-самец массой 352 кг выпил 104 л за один прием. Попав в рот, вода затем проходит через пищевод в желудок и дальше в кишечник. Отсюда она может попасгь в кровь посредством осмоса. Если концентрация солей в жидкости кишечника ниже, чем в крови, вода проникнет в кровь.

Рис.4. Принцип обратной связи, действующий в простом термостатическом электpонагревателе. Когда температура достигает заданного уровня, контакт прерывается, нагреватель выключается и температура падает. Koгда она упадет ниже заданного уровня, нагреватель снова включится.

Но если эта концентрация выше, вода может мигрировать в обратном направлении и в сосудах наступит временное обезвоживание.

Выход воды из кровеносных сосудов приводит к изменению концентрации солей во внеклеточном компартменте, что вызывает некоторое перераспределение воды между ним и клетками; в результате клетки частично обезвоживаются и сморщиваются. Эти изменения обнаруживаются специальными клетками в головном мозгу, называемыми осморецепторами. Чувствительны ли осморецепторы к изменениям во внеклеточной жидкости или реагируют на свое собственное сморщивание при дегидратации, пока не ясно. Известно, что они находятся в гипоталамической области мозга, и их стимуляция оказывает два главных действия: усиленный поиск воды для питья и активацию разных механизмов ее сохранения.

В гипоталамусе находятся осморецепторы. которые контролируют выделение антидиуретического гормона из расположенного непосредственно под ним гипофиза. Присутствие антидиуретического гормона в кровотоке ведет к понижению количества и повышению концентрации мочи, выделяемой почками.

Рис.5. Распределение воды между внутриклеточным и внеклеточным компартментами тела. Внеклеточный компартмент включает сосудистое иинтерстициальное пространства.
Рис.6. Схема строения гипофиза человека. Гипоталамус снабжается кровью из внутренних сонных артерий, которые снабжают также переднюю и заднюю доли гипофиза. Нейросекреторные нейроны, тела которых лежат в гипоталамусе, секретируют гормоны в венозную систему. Ж - третий желудочек головного мозга.

Повреждение гипофиза или связанных с ним областей гипоталамуса вызывает несахарный диабет, к симптомам которого относятся чрезмерное мочеотделение и вследствие этого жажда. Таким образом, антидиуретический гормон играет важную роль в сохранении воды.

К другим сохраняющим воду механизмам относятся повышение ее реабсорбции в тонком кишечнике - а следовательно, меньшая потеря с калом - и уменьшение количества поедаемой пищи. Из-за того что непереваренные остатки пищи и отходы метаболизма должны быть выведены, некоторая потеря воды неизбежна, но ее можно снизить, уменьшив количество потребляемой пищи. Лабораторные исследования показывают, что потери воды у голубей, лишенных корма, составляют лишь четверть нормального уровня. Кроме того, по некоторым данным, голуби могут контролировать потери воды при дыхании. Потерю воды на терморегуляцию иногда можно снизить определенным поведением - поисками прохладного места и снижением теплопродукции, вызываемой физической нагрузкой и потреблением пищи. Когда верблюду не хватает воды, он дает температуре тела повыситься и днем сохраняет тепло в жировых тканях горба. Во время холодной ночи в пустыне это тепло излучается без всякой потери воды. В противоположность распространенному мнению верблюды не хранят в горбах воду, хотя при метаболизме жировой ткани, разумеется, выделяется некоторое количество воды.

Животные обезвоживаются не только вследствие дегидратации клеток, но и за счет уменьшения объема внеклеточной жидкости. Геморрагия и другие формы кровопотерь не меняют осмотического баланса, но утраченная жидкость должна быть возмещена. Для обнаружения такой потери у животных имеются разные механизмы. В ответ на снижение объема крови, протекающей через почки, вырабатывается гормон ренин.

Рис.7. Внеклеточная жажда. Гиповолемия, обнаруживаемая рецепторами кровяного давления, вызывает секрецию ренина околоклубочковыми клетками. Ренин превращается в гипотензин, который стимулирует питье.

Он поступает в кровь и там стимулирует синтез другого гормона - ангиотензина, который оказывает два основных действия: во-первых, поддерживает нормальное кровяное давление - а следовательно, регулирует кровообращение, - во-вторых, служит мощным возбудителем жажды. Главные компоненты сложных механизмов внеклеточной регуляции жажды показаны на рис.7.

Поддержание водного баланса тесно связано с терморегуляцией и питанием. Многие животные при обезвоживании сильно снижают потребление пищи, что очень способствует сохранению воды, так как принятие пищи, как мы видели, обычно вызывает значительную потерю воды путем экскреции. Основные механизмы сохранения воды показаны на рис.8. Важно иметь в виду, что способ ее сохранения некоторым образом невыгоден для животного. Он может мешать нормальной терморегуляции или снижать поступление энергии. Различные механизмы по-разному важны для разных видов, что зависит от нормальных экологических условий жизни животного. Так. верблюд, чтобы сохранить воду, жертвует постоянной температурой тела, а голубь отказывается от еды. чтобы эта температура поддерживалась примерно на одном уровне.

На первый взгляд система регуляции водного баланса служит наглядным примером гомеостаза: животное обнаруживает отклонения от нормальных количеств и концентрации внеклеточной воды и принимает меры для исправления положения, поглощая воду или снижая ее потери посредством тех или иных механизмов. Однако ситуация не гак проста из-за взаимодействия с другими системами. Например, часто животное пьет, когда оно не обезвожено.

4. Энергия и питательные вещества

Животные нуждаются в пище, в результате переваривания которой они получают определенные специфические питательные вещества и витамины для роста и восстановления тканей, а также для борьбы с паразитами и болезнетворными организмами.

Клетки тела получают энергию главным образом в форме глюкозы, растворенной во внеклеточной жидкости. В процессе метаболизма эта энергия высвобождается в клетке наряду с водой, двуокисью углерода и теплотой в качестве побочных продуктов.

Рис.8. Механизмы сохранения воды, действующие, когда питье невозможно. При усилении жажды антидиуретические гормоны гипофиза вызывают удержание воды в почках, и с мочой ее теряется меньше. Другой важный способ сохранения воды - уменьшение потребления пищи, так как ее переваривание и дефекация в норме связаны с потерей воды.

Глюкоза попадает во внеклеточную жидкость либо непосредственно из переваренной пищи, либо из печени, в которой запасается в виде гликогена.

Клетки тела получают энергию также при окислении жирных кислот. Исключение составляют нервные клетки, поскольку они могут использовать только глюкозу. Для того чтобы обеспечить достаточное количество энергии клеткам нервной системы, необходимо, чтобы уровень глюкозы в крови сохранялся примерно на одном уровне. Доступность глюкозы для клеток регулируется гормоном инсулином. Нервные клетки могут поглощать глюкозу и в отсутствие инсулина, но другим клеткам инсулин требуется для транспорта глюкозы через наружную мембрану. При недостатке глюкозы, например при голодании, уровень инсулина в крови падает настолько, что глюкоза становится доступной только нервным клеткам, а другие получают энергию за счет окисления жирных кислот. При воздержании от пищи глюкоза поступает из резервов организма, к которым относятся запасы гликогена в печени и мышцах, запасы жира в разных частях тела и, как последнее средство, белок мышц и других тканей. Жир расщепляется на глицерол и жирные кислоты, а глицерол в печени превращается в глюкозу. Белок расщепляется до аминокислот, из которых также в печени образуется некоторое количество глюкозы. Источники энергии при голодании представлены на рис.9.

Другим главным источником энергии служит пища. Виды животных сильно различаются по количеству и типам необходимого им корма. Мелкие животные с интенсивным метаболизмом, например певчие птицы, не получая пищу, начинают быстро ощущать недостаток энергии. Для сохранения массы тела и нормальной активности большая синица должна питаться каждые несколько минут. Ночью, когда это невозможно, некоторые птицы цепенеют, снижая температуру тела и сохраняя тем самым энергию. Другие животные могут использовать энергетические резервы и долгое время обходиться без пищи. Например, высиживающая птенцов кустарниковая курица не питается много дней и ест мало, даже если корм положен около гнезда. Животные с метаболизмом, замедляющимся при низких температурах, - рыбы, пресмыкающиеся и млекопитающие во время зимней спячки - могут неделями не потреблять пищи.

Попавшая в рот пища или тут же запасается, или переходит в желудок и кишечник и переваривается. Ферменты в пищеварительном тракте расщепляют пищевые вещества до их основных компонентов.

Рис.9. Основные источники энергии, доступные во время голодания

Так, липаза разлагает молекулы жира на глицерол и жирные кислоты, а трипсин и химотрипсин расщепляют специфические аминокислотные связи в белках. Процесс пищеварения и участвующие в нем ферменты значительно различаются у разных видов животных. У одних, например у плоского червя планарии, полный пищеварительный тракт отсутствует, у других, в частности у травоядных позвоночных, очень сложные пищеварительные системы позволяют справляться с растительными материалами типа клетчатки, которую другие животные переваривать не в состоянии. Продукты переваривания переходят в кровоток отчасти за счет диффузии, а отчасти за счет активного транспорта через кишечную стенку.

Процесс переваривания и характер питания часто тесно связаны. Многие животные изменяют потребление пищи в зависимости от питательной ценности продуктов пищеварения. В регуляции этого типа участвует много механизмов, из которых самый простой состоит в прямом обнаружении вещества, как это предположительно происходит с ионами натрия. Высокое и достаточно постоянное его содержание в жидкостях организма жизненно важно. Натрий участвует во многих фундаментальных физиологических процессах, включая распространение нервных импульсов. В природе он доступен для животных в виде хлористого натрия, но встречается нечасто. Поэтому неудивительно, что животные должны обладать специальной тягой к натрию. Они обнаруживают его в пище двумя главными способами. Во-первых, для большинства позвоночных поваренная соль обладает выраженным вкусом. Во-вторых, натрий оказывает сильное действие на жидкую среду организма, как было указано выше, и его дефицит приводит к секреции гормона альдостерона из коры надпочечников, который вызывает реабсорбцию натрия из мочи, образующейся в почках.

Тяга к натрию, по-видимому, является врожденной, но многие животные хорошо научаются распознавать и запоминать места, где находятся его источники. Так, например, крысам можно предоставить выбор между пресной и соленой водой в качестве награды в лабиринте. Крысы, которым не давали пить, научались оказывать предпочтение тому месту в лабиринте, где была пресная вода.

Если тех же крыс затем лишали не воды, а натрия, они немедленно переключались на соленую воду, т.е. они запоминали, где находится натрий, несмотря на то, что пробовали его, когда, испытывая жажду, отвергали соленую воду.

Животные не способны обнаруживать непосредственно многие необходимые витамины и минеральные вещества по вкусу и не чувствуют изменения их уровня в крови. Тем не менее при их недостатке животные начинают заметно предпочитать пищу, содержащую такие вещества. Долгие годы этот специфический голод был своего рода загадкой для ученых, которые пытались объяснить, откуда животное знает, какая пища содержит полезный для него ингредиент. В медицинской литературе имеются также сообщения о детях, которые едят уголь и другие необычные вещества. Такие привычки объяснялись недостатком в пище определенных элементов, например кобальта, но как ребенок узнает, что надо есть, остается непонятным.

Крысы с дефицитом тиамина сразу же оказывают предпочтение новой пище, даже если в ней нет тиамина, а в прежнюю он добавляется. Предпочтение это сохраняется недолго, но, если потребление новой пищи сопровождается устранением дефицита, животное быстро научается предпочитать ее. Такое быстрое научение на основе физиологических последствий поедания позволяет крысе пробовать новые источники пищи и таким образом находить пищу, содержащую требуемые ингредиенты. Подробное изучение пищевого поведения крыс показывает, что в норме они стремятся избегать нового корма или поедать его совсем мало за один прием. Промежутки между едой достаточно велики для того, чтобы животное могло оценить последствия потребления новой пищи. Ученые обнаружили также, что у крысы во время еды некоторая часть пищи быстро переходит из желудка в кишечник, минуя ранее заглоченный корм, который все еще находится в желудке.

Рис.10. Желудки крыс; видно распределение нищи синего цвета, съеденной после неокрашенной пищи.

Таким образом крыса может оценить особенности пищи, проглоченной позднее.

Специалисты считают, что безвитаминная пища подобна яду замедленного действия. Было отмечено, что крысы, не получающие тиамина, отказываются от привычной пищи, но жадно поедают новый корм, тоже лишенный тиамина. Отвращение к обычной еде сохранялось даже после того, как дефицит был устранен. Крысы, отравившиеся ядовитой пищей, тоже отказываются от нее и проявляют повышенный интерес к новым видам корма. Таким образом, реакция крысы на неполноценную пищу и ее поведение по отношению к токсичному корму очень близки.

Пищевые потребности животного многочисленны и разнообразны. У крысы они включают воду, девять незаменимых аминокислот, несколько жирных кислот и по меньшей мере 10 витаминов и 13 минеральных веществ. Несмотря на множество научных работ, вопрос о том, какие физиологические процессы инициируют еду. до некоторой степени еще не решен. Кэннон полагал, что это зависит от сокращений желудка и других периферических факторов. Однако после перерезки нервов, идущих от желудка, или удаления желудка по медицинским показаниям пищевое поведение человека почти не меняется. Согласно некоторым теориям, рецепторы в головном мозгу чувствительны к присутствию питательных веществ в крови. Такие вещества, как глюкоза, аминокислоты или жиры, могут служить показателями потребности в определенной пище. Уровень глюкозы в крови повышается во время переваривания, но он меняется и в других условиях, например при активации вегетативной нервной системы или в предвкушении еды. Высказывалось мнение. что головной мозг реагирует скорее на недостаток глюкозы, чем на ее наличие . Это предположение подтверждается недавно полученными данными, но они еще недостаточно убедительны.

Некоторые ученые сомневаются в том, что для возникновения чувства голода первостепенное значение имеет прямое слежение за уровнем питательных веществ в организме. Хотя способность животных реагировать на избыток или дефицит определенных компонентов пищи позволяет думать именно о прямом контроле и регуляции, возможны и другие механизмы. Животные, испытывающие недостаток какого-либо вещества, стремятся пробовать разнообразную пищу и быстро научаются выбирать то, что им нужно. Имеющиеся данные говорят, что такое научение основано на различении патологического и нормального состояния в целом, а не на ощущении определенного дефицита. Было показано, что крысы, которым предоставлен большой выбор очищенных питательных веществ, сами составляют из них хорошо сбалансированный рацион.

Откуда крыса знает, какую пищу выбрать в данное время? Несомненно, что за поступлением некоторых составных частей рациона - водой, натрием и, возможно, глюкозой - следят вкус и сенсорные процессы в мозгу, которые регистрируют присутствие каждого из этих веществ в крови. Наличие других компонентов пищи, в частности витаминов и минеральных солей, непосредственно контролировать нельзя. Животное учится тому, что ему есть, чтобы не заболеть. В отношении аминокислот и жиров положение остается неясным. Высказано предположение о прямом слежении за этими веществами и их гомеостатическом контроле, но соответствующих данных недостаточно.

5. Мотивационные системы

Требования гомеостаза, как мы видели, ставят определенные задачи перед поведением животных. В каждый данный момент животное должно оценивать свое внутреннее состояние, добавлять к этому свои знания о вероятных будущих нуждах и о тех новых нуждах, которые возникнут в ходе той или иной деятельности, и затем выбирать, что делать дальше.

Традиционное понимание мотивации основано на принципе простой обратной связи. Изменение во внутреннем состоянии животного воспринимается головным мозгом и побуждает к определенному поведению. Такое поведение бывает аппетитивным и консумматорным. Аппетитивное поведение включает в себя поиск подходящих внешних стимулов; когда они найдены, наступает консумматорная активность, например потребление пищи или воды. Консумматорное поведение ведет к снижению драйва - или непосредственно, или путем уменьшения внутренних или внешних стимулов, которые его вызвали. Тогда консумматорное поведение также прекращается. Например, обезвоживание тканей тела ощущается головным мозгом и приводит к возникновению драйва жажды; он побуждает животное искать воду; когда вода найдена, животное пьет. Питье может снизить жажду непосредственно, т.е. через кратковременные механизмы насыщения, такие, как ощущение воды во рту или тяжесть от воды в кишечнике. Кратковременные механизмы насыщения дополняются или обходятся у некоторых видов животных поступлением воды в кровоток, что ослабляет дегидратацию, вызвавшую драйв жажды. Таким образом, животное перестает пить или под действием кратковременных механизмов насыщения, или благодаря тому, что состояние его водного баланса больше не вызывает жажды.

Термин драйв введен Вудвортом как альтернатива выдвинутому Мак-Дугаллом понятию инстинкта . Вудворт различал в мотивации способность возбуждать энергию и направлять деятельность. Первичные драйвы возникают из потребностей тканей, а вторичные - из приобретенных навыков. Сходные представления о драйве развивали первые этологи. Например, Лоренц излагает этологическую концепцию в виде трех последовательных процессов:

1) накопление специфической для данного действия энергии, вызывающее аппетитивное действие;

2) аппетитивное поведение, направленное на достижение стимульной ситуации, которая активирует врожденный запускающий механизм, и 3) приведение в действие запускающего механизма и разряд эндогенной активности в консумматорном действии. Лоренц постулировал, что "некоторый вид энергии, специфичный для определенной активности, сохраняется, пока эта активность не наступила, и потребляется при ее осуществлении".

Основную идею драйва как побуждения к определенным действиям разделяли этологи и разные школы психологии животных в США. В течение 50 лет со времени его возникновения понятие драйва неоднократно обсуждалось и анализировалось на квазифилософском уровне. Споры шли вокруг вопросов: присуща ли драйвам целенаправленность, общий или специфический у них характер, можно ли считать, что драйв обеспечивает поведение энергией. В последние годы возникла тенденция отказаться от концепции драйва по причинам, изложенным ниже.

Классический взгляд на голод и жажду как на гомеостатические драйвы предполагает, что потребление пищи и воды - ответ на обнаруженные изменения в физиологическом состоянии животного. Считается, что эти действия управляются отрицательной обратной связью, потому что они служат уменьшению физиологических отклонений, вызвавших такое поведение. Однако прием пищи и воды не только ответ на физиологические изменения, но часто и предварение их. У многих животных имеется определенный "режим" питания, повторяемый при постоянных условиях ежедневно. Как люди испытывают чувство голода в определенные часы, так и у животных стремление к принятию пищи может определяться временем суток. Когда внешняя среда в разные дни мало меняется, у животных быстро устанавливается суточный порядок активности, и они едят в определенные часы даже при постоянном наличии пищи. Физиологические процессы могут подстраиваться к этому порядку. У человека, например, печень может прекратить мобилизацию гликогена как раз перед едой. Это ведет к падению уровня сахара в крови "в предчувствии" его повышения после переваривания пищи. Опыты показали, что такие физиологические приспособления могут вырабатываться условно-рефлекторно применительно ко времени дня.

Мы видели, как отдаленные последствия принятия пищи приводят к усилению жажды. Многие животные пьют не от такой жажды, а заранее, тем самым предотвращая обезвоживающее действие приема пищи. Подобным же образом, как уже говорилось, терморегуляция часто связана с потерей воды, но некоторые животные пьют не в ответ на вызванную ею дегидратацию, а заранее, запасая в результате воду для регуляции температуры тела. Так, было обнаружено, что египетские горлицы, не получавшие воды в течение двух дней при разных температурах, выпивали одно и то же количество воды в экспериментальной камере при температуре 20°С. Однако горлицы, лишенные воды в течение двух дней при одной и той же температуре, затем выпивали разные ее количества при разных температурах. Аналогичные результаты, полученные на крысах, показывают, что эти животные пьют, непосредственно реагируя на изменения температуры среды, еще до наступления какой-либо тепловой дегидратации. Термин предваряющая связь применим к ситуациям, когда последствия поведения, вызываемого обратной связью, предвосхищаются и принимаются соответствующие меры по предотвращению физиологических отклонений.

Причины какой-либо активности и ее физиологические последствия не всегда однозначно соответствуют друг другу. В некоторых случаях, например при поведенческой терморегуляции, активность животного может приводить лишь к изменению температуры тела. Но чаще поведение животного сказывается на его состоянии разносторонне. Так, принятие пищи изменит множество физиологических процессов в зависимости от состава поедаемых продуктов. Последствия такого поведения называют амбивалентными.

Рис.11. Действие температуры в помещении на питье у горлиц. Вверху: влияние температуры во время лишения воды на последующее питье. Внизу: влияние температуры во время питья.

Мы с Сибли показали в 1972 г., что для уравновешивания амбивалентных последствий поведения животные должны быть способны к адаптивному контролю, меняющему свойства их регуляторных механизмов в соответствии с условиями среды. Известно много примеров такого адаптивного контроля. Так, я обнаружил, что горлицы научались изменять свою оценку ближайшего гидратирующего действия выпиваемой воды после испытанных ими переходов с чистой воды на соленую, и наоборот. Мы уже видели, как крысы научаются избегать определенную пищу или выбирать ее на основе физиологических последствий, наступающих через несколько часов после еды. Было показано, что после хирургического удаления определенных физиологических регуляторов животные стараются поддерживать гомеостаз с помощью поведенческих реакций. Такого рода компенсаторному поведению научались крысы, помещенные в подходящую среду после удаления надпочечников, щитовидной, паращитовидной и поджелудочной желез. Иными словами, животные, лишенные физиологической регуляции, обращались к вспомогательным средствам.

Рис.12. Эта модель регуляции брачного поведения у самцов крыс в принципе мало отличается от моделей, предложенных для регуляции еды или питья.

Чтобы понять физиологические и поведенческие механизмы гомеостаза, недостаточно представлений о простой отрицательной обратной связи. Поддержание физиологического состояния в узких пределах достигается сочетанием отрицательной обратной связи, предваряющей связи и адаптивного контроля.

Традиционно различались гомеостатические стороны поведения - питание, питье и терморегуляция - и негомеостатические виды активности, например агрессия и половое поведение. В последние годы правомерность такого деления оспаривается. Регуляция полового поведения в своей основе не отличается от регуляции питания или питья. Принципы контроля в целом одинаковы и могут быть представлены моделями, использующими одни и те же термины и представления.

Физиологические процессы, определяющие поведение, находятся в сложном взаимодействии. В возникновении, поддержании и прекращении простой на первый взгляд активности может участвовать несколько разных факторов. При питании ситуация гораздо сложнее. Чтобы разобраться в этой сложности, ученые, изучающие поведение, обратились к применяемым инженерами для описания и анализа сложных машин методам теории систем управления. Создав количественные модели различных компонентов системы, можно получить ее компьютерную имитационную модель как целого. Такая модель может служить для количественных предсказаний, проверяемых опытами, причем результаты этих опытов используются для уточнения гипотез и создания на этой основе все более совершенных моделей. Теория систем управления применима к разным типам поведения, в том числе к питанию, питью, терморегуляции и половому поведению.

По сравнению с точностью и строгостью теории систем управления концепция драйва расплывчата и запутанна. Кроме того, новый подход вскрыл концептуальные проблемы, которые наглядно демонстрируют нежизнеспособность понятия драйва. Две такие проблемы были точно указаны Хайндом, но необходимые для рассмотрения их следствий теоретические представления тогда еще не были приняты в области поведения животных. Одна из ошибок состоит в том, что драйвы можно рассматривать как однозначные переменные величины. Думая о драйве голода, мы представляем себе величину, измеримую по одной шкале. Так, мы думаем, что животное слегка или же сильно голодно. Но, как уже говорилось, голод имеет много аспектов. Животное может испытывать специфический голод в отношении, скажем, соли или тиамина. У него может быть недостаток белка или легкодоступной энергии. Эти особенности могут влиять на пищевое поведение, поэтому неправильно говорить о голоде как об одномерной переменной. Альтернативная формулировка представляет голод и другие так называемые драйвы как векторы. Такой подход послужил основой для изображения мотивационных систем в виде пространственных моделей, к чему мы вернемся ниже.

Вторая ошибка - представление о драйве как об источнике энергии для поведения. Хотя эта точка зрения была очень влиятельна в психологии и этологии, она создает трудности, как только вопрос выходит за рамки общей аналогии. Многие прежние психологи механистического направления основывали свои взгляды на неприменимых в данном случае физических понятиях силы, мощности и энергии. Как и первые этологи, они приравнивали драйвы к энергии, считая, что некая мотивационная энергия накапливается при пищевой, питьевой, половой депривации и что эта энергия, или драйв, определяет интенсивность последующею поведения. Основная трудность здесь состоит в том. что энергия в физическом смысле представляет собой способность и сама по себе не может быть причиной действия. Исходя из неверных аналогий, теории драйва стали неприменимыми и противоречивыми.

Третья важная проблема, связанная с понятием драйва, возникла при попытках классификации. Некоторые психологи стремились выделить драйв для каждого вида поведения; этот подход присущ ранним этологическим теориям. Так. можно было бы постулировать сексуальный драйв, определяющий половую энергию, но можно и разделить его на драйв ухаживания, драйв спаривания и драйв эякуляции. Возникает вопрос: сколько должно быть драйвов? Часть психологов высказывалась в пользу единого общего драйва, но и это предложение оказалось неудовлетворительным. Если же отказаться от понятия драйва и сосредоточить внимание на изменениях мотивационного состояния, лежащих в основе поведения, то можно перейти к выявлению связанных с этим факторов.

6. Мотивационное состояние

В любой данный момент животное находится в определенном физиологическом состоянии, за которым следит головной мозг. Наблюдаемое поведение определяется мозгом в соответствии с этим состоянием и с воспринимаемыми животным внешними стимулами. Это одновременно физиологическое и перцептивное состояние представлено в головном мозгу так называемым "мотивационным состоянием" животного. Оно включает факторы, вызывающие как начало деятельности, так и поведение животного в данный момент. Таким образом, оно принципиально отлично от прежнего понятия драйва, которому пришло на смену.

Физиологическое состояние животного может быть представлено точкой в физиологическом пространстве. Осями координат здесь служат важные физиологические переменные, а границей - пределы устойчивости вида по этим переменным. Подобным же образом мотивационное состояние животного может быть представлено точкой в мотивационном пространстве. Координатами в нем являются важные мотивационные стимулы, например степень жажды или сила какого-нибудь внешнего стимула. Понятие пространства состояний важно не только при описании мотивационных систем, но и как связующее звено между механистической стороной принятия решения и лежащим в его основе намерением.

Одно из достоинств пространственного представления состояний - в том, что таким способом легко изобразить составляющие сложных видов мотивации, например голода.

Рис.13. Голод, изображенный в виде многомерной векторной величины; ж - жир; б - белок; у - углевод; о - исходная точка; х - состояние голода.
Рис.14. Мотивационная изоклина, связывающая голод и силу сигналов пищи. Линия соединяет состояния, которые вызывают одинаковое стремление к поеданию пищи.

Другое преимущество состоит в том, что нетрудно наглядно показать совместное действие внутренних и внешних стимулов. Количественные значения мотивационной эффективности внешних стимулов могут быть объединены в показатель сигнальной силы и что отношения между разными стимулами могут быть представлены мотивационной изоклиной. Например, стремление к поиску пищи, возникающее при сильном голоде и слабости сигналов, указывающих на доступность пищи, может быть таким же, как и стремление, вызванное сочетанием слабого голода и сильных сигналов о доступности пищи.

Точки, изображающие эти два разных мотивационных состояния, лежат на одной мотивационной изоклине. Форма такой изоклины показывает, каким образом сочетаются разные факторы при появлении определенной тенденции. Например, внутренние и внешние стимулы, управляющие ухаживанием самца гуппи, по-видимому, комбинируются мультипликативно, хотя следует соблюдать осторожность в отношении шкал измерений, прежде чем делать окончательные выводы.

Важное различие между подходом к мотивации с точки зрения пространства состояний и традиционной концепцией драйва состоит в том, что при таком современном подходе не строится предположений о том, какими путями комбинируются разные мотивационные факторы или как соотносятся мотивация и поведение. Первые психологи и этологи были склонны считать, что мотивационные факторы сочетаются особым образом. По общепринятому тогда мнению, внешние и внутренние факторы взаимно мультипликативны, т.е. тенденция к осуществлению какого-либо действия равна нулю, если внутренний драйв сильный, но отсутствуют соответствующие внешние сигналы; она также равна нулю, если драйв пренебрежимо мал, а внешние сигналы сильны. Хотя в некоторых случаях это может быть и верно, но сейчас считается, что этот вопрос полностью эмпирический и не нуждается в какой-либо особой концепции.

Традиционно предполагалось, что поведение побуждается изнутри и между силой драйва и особенностями возникающего в результате поведения существует прямая причинная зависимость. Согласно современным взглядам, зависимость между мотивационным состоянием и поведением не прямая. Хотя определенная комбинация факторов может вызвать вполне определенную тенденцию, эта тенденция необязательно непосредственно выражается в наблюдаемом поведении.

Рис. Влияние силы внешней стимуляции и внутреннего состояния на ухаживание самцов гуппи. Кривые изображают сочетания внешнего стимула и внутреннего состояния, вызывающие сигмовидные позы ухаживания возрастающей интенс ивности,.

Например, у животного стремление к еде может быть сильнее любого другого, однако в интересах некоторой долговременной стратегии животное воздерживается от еды; или, наоборот, животное ест, хотя это стремление у него не самое сильное. Наблюдения над поведением указывают, что такие ситуации вполне возможны. Их оценка составляет трудную задачу, и многие вопросы еще остаются нерешенными.

Вообще попытки непосредственно установить причинную цепь, связывающую мотивацию и поведение, сейчас предпринимаются редко. Отчасти это объясняется концептуальными трудностями калибровки и измерения причинных факторов, отчасти - пониманием того, что животные, вероятно, сложнее в "умственном" отношении, чем предполагалось до сих пор. Большинство современных исследований сосредоточено не на непосредственных причинах поведения, а на его последствиях. Чем определяются эти последствия? Как они влияют на поведение? В какой мере животное способно учитывать вероятные последствия будущих действий? В какой мере оно способно оценить издержки и выгоды разных линий поведения?

Последствия поведения животного являются результатом взаимодействия поведения и среды. Например, последствия фуражировки частично зависят от примененной стратегии, а частично - от наличия и доступности пищи. Так, птица, питающаяся насекомыми, может искать их в подходящих или же неподходящих местах, а насекомых в разное время может быть много или мало. Подобным же образом последствия ухаживания, выраженные в реакции партнера, зависят отчасти от типа и интенсивности этого ухаживания, а отчасти от мотивации и поведения второго животного.

Последствия поведения животного влияют на его мотивационное состояние различными путями. Два важных последствия фуражировки - затрата энергии и поедание пищи. Энергия и другие физиологические ресурсы, например вода, расходуются при всяком поведении в количестве, которое зависит от уровня активности, погоды и т.п. Такие затраты надо учитывать, потому что они влияют на состояние животного.

Рис.16. Последствия поведения, изображенные в виде траектории в мотивационном пространстве. Слева. Последствия питья холодной воды. Справа. В месте пересечения мотивационной изоклины траекторией можно ожидать изменений поведения.

Поедание пищи может по-разному изменять состояние животного. Находясь во рту, пища может на время усиливать аппетит по механизму положительной обратной связи, оказывать насыщающее действие или выбрасываться из-за неприятного вкуса. Попав в кишечник, пища может вызывать кратковременное насыщение и влиять на другие физиологические факторы, например на температуру и водный баланс. В кишечнике пища переваривается, и питательные вещества всасываются в кровяное русло. Происходящие в результате питания изменения крови сложны и отражаются на многих сторонах физиологического состояния животного. Следует помнить, что все виды поведения имеют последствия такой же сложности, включающие влияние на других животных и на элементы внешней среды, например на гнездо. В то время как точно перечислить последствия питания сравнительно легко благодаря множеству исследований, проведенных с этим видом поведения, не следует забывать, что воздействия на других животных и на среду влияют на мотивационное состояние данного животного примерно так же.

Последствия поведения можно представить в мотивационном пространстве состояний. Исходное состояние изображается в виде точки в этом пространстве. Поведение животного изменяет его состояние, и точка описывает некоторую траекторию. На странице, имеющей два измерения, эта траектория изображается только в одной плоскости, но можно представить себе, что меняющееся состояние описывает соответствующую траекторию в многомерном пространстве. Достоинство такого типа изображения состоит в том, что можно относительно просто показать очень сложные изменения состояния. Например, когда животное пьет холодную воду, мы можем видеть, что решения изменить поведение зависят отчасти от этой траектории и отчасти от положения соответствующих мотивационных изоклин.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:57:55 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
07:56:11 29 ноября 2015

Работы, похожие на Курсовая работа: Гомеостаз и поведение животных

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150903)
Комментарии (1842)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru