Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Определение моментов инерции тел методом трифилярного подвеса

Название: Определение моментов инерции тел методом трифилярного подвеса
Раздел: Рефераты по физике
Тип: контрольная работа Добавлен 22:22:25 18 ноября 2010 Похожие работы
Просмотров: 3565 Комментариев: 2 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно     Скачать

Министерство образования РФ

Рязанская государственная радиотехническая академия

Кафедра ОиЭФ

Контрольная работа

«Определение моментов инерции тел методом трифилярного подвеса»

Выполнил Ампилогов Н.В.

Проверил Малютин А.Е.

Рязань 2002


Цель работы

Определить момент инерции тела относительно оси, проходящей через центр его масс, экспериментально проверить аддитивность момента инерции и теорему Штейнера.

Приборы и принадлежности: трифилярный подвес, секундомер, штангенциркуль, линейка набор тел.

Элементы теории

Момент инерции тела является мерой его инерции при вращательном движении и зависит не только от массы данного тела, но и от распределения данной массы относительно оси вращения.

Момент инерции материальной тачки (I) относительно некоторой оси равен:

I = mr2, где m – масса материальной точки; r – расстояние от точки до оси вращения.

В силу аддитивности момента инерции можно записать выражение:

,

где Ik – момент инерции k-ой части вращающейся системы; N – число частей во вращающейся системе.

Для протяженных тел момент инерции определяется, как сумма моментов инерции отдельных элементарных объёмов (dV), на которые можно разбить данное тело и которые можно считать материальными точками:


,

где dm = rdV – масса элементарного объёма; r - плотность тела в данной точке. Для однородных тел, у которых r - const:

.

Так, момент инерции однородного круглого пустотелого цилиндра или диска массой m с внутренним радиусом R2 относительно оси, совпадающей сего геометрической осью, рассчитанный с помощью формулы (4), равен:

.

Тогда:

для сплошного цилиндра, у которого R1 = 0, R2 = R.

;

для тонкого кольца, у которого R1 = R2 = R

I = mR2.

Согласно определению момента инерции одно и то же тело относительно разных осей обладает различными моментами инерции, которые могут быть найдены по теореме Штейнера:

8) I = I0 + ma2, где I0 –момент инерции тела относительно оси, проходящей через центр масс тела; I – момент инерции того же тела относительно оси, параллельной предыдущей и смещённой на расстояние a от неё; m – масса тела.

В данной работе требуется определить момент инерции ненагруженной платформы и платформы с исследуемыми телами, что позволяет найти момент инерции самих тел и провести проверку аддитивности момента инерции, а так же убедиться в справедливости теоремы Штейнера. Для этого в ней используется метод трифилярного подвеса.

После однократного выведения данной системы (подвеса или подвеса с грузом) из положения устойчивого равновесия, поворотом на некоторый угол a, система начинает совершать произвольные колебания, период которых зависит момента инерции системы, а следовательно и от её массы. Таким образом полную механическую энергию данной системы (E) в произвольный момент времени t (и пренебрегая трением) можно записать так:

,

где J – момент инерции системы, состоящей из платформы и установленного на ней исследуемого твёрдого тела; w = da / dt – угловая скорость системы при повороте её на угол a; M – масса системы (платформы с грузом или без оного). В формуле (9) - кинетическая энергия вращательного движения системы, - потенциальная энергия системы. При (z – z0) – есть небольшая высота, на которую приподнимается система при вращении в силу перекоса нитей на которых смонтирован трифилярный подвес (z0 – высота покоящейся платформы; z – высота платформы, совершающей крутильные колебания, в произвольный момент времени).

В предоставленном после этого самому себе устройстве начнут совершаться крутильные колебания, период которых зависит от момента инерции подвешенной системы. Момент инерции, а следовательно, и период колебаний будут меняться, если платформу нагружать какими-либо телами.

Координаты точки А1 верхнего диска в системе координат, указанной на рисунке, равны: х1=r; y1 = 0; z1 = 0. Координаты же точки А крепления нижней платформы к нити подвеса в момент времени, когда платформа повернулась на малый угол a, равны, соответственно,

x = R×cos(a); у = R×sin(a); z = z.

Расстояние между точками А и А1 равно длине нити подвеса (l), и поскольку при колебаниях платформы длина нитей не меняется, то в любой момент времени справедливо соотношение:

.

С учетом указанных выше координат точек А и А1 на основании (11) можно написать для произвольного значения угла а поворота следующее выражение:

.

Если a = 0, то

.

Здесь x = R; у = 0; z = z0 - координаты точки А нижней платформы в момент времени, когда a = 0. Приравнивая выражения (12) и (13) и раскрывая скобки, получаем:


Так как угол a мал, то для него можно использовать следующие соотношения:

sin(a) »a;

Используя их, из (14) для малых углов a получаем:

.

Учитывая соотношение (14), получаем:

;

или

.

Подставив в (9) найденное значение (z0-z), имеем

;

или


.

Дифференцируя выражение (21) по времени и учитывая, что полная энергия системы Е с течением времени не меняется, получаем:

.

Из последнего выражения следует:

.

Обозначив

,


получим

.

Это дифференциальное уравнение гармонического осциллятора. Решение уравнения (25) можно записать в виде:

,

где a0 - амплитуда колебания; w0 - циклическая частота колебаний.

Период колебаний равен:

.

Решив последнее уравнение относительно J, получим расчетную формулу:


.

На основании (28) по известным параметрам установки (R, r, z0, М) и измеренному на опыте периоду колебаний можно определить момент инерции системы.

Расчётная часть

R = 12,4×10-2 м.; R1 = 54,25×10-3 м.;

R2 = 49×10-3 м.; r = 3,2×10-2 м.;


L = 192×10-2 м.; mпл = 373×10-7 кг.;

DR » 0; DR1 » 0;

DR2 » 0; Dr » 0;

DL » 0; Dmпл » 0;

mтела = 187×10-7 кг.; Dmтела » 0;

№ п/п 1) Определение J платформы 2) Определение J тела 3) Проверка аддитивности момента инерции 4) Проверка теорема Штейнера
N t, с Dt, с n t, с Dt, с n t, с Dt, с n t, с Dt, с
1

15

69 1,99×10-4

15

59 1,99×10-4

15

52 1,99×10-4

15

59 1,99×10-4
2 66 61 54 60
3 70 59 53 58

Ср.

Знач.

68,33 59,67 53 59

Вначале определим периоды Ti колебаний системы во всех случаях снятия показаний (см. таблицу).

Ti = tср/n;

1) c. 2) c. 3) c. 4) c.

Используя измерения снятые в 1-ом случае, по формуле (28) рассчитаем момент инерции ненагруженной платформы Jпл:

кг×м2.

Вычислим значение абсолютной погрешности DJпл:

D Jпл = sJпл × tст; где tст = 1,95 при P = 0.95


;

;

Полагая, что значения среднеквадратичных погрешностей m, R, r и L пренебрежимо малы (в силу приведения их значений по умолчанию), формулу для вычисления DJпл можно свести к формуле:

.

В свою очередь st найдём следующим способом:

; ;

;

при k = 1,1 (для P = 95) и c = 1 с.

с.

Тогда DJпл принимает значение:


кг×м2.

Теперь найдём момент инерции системы (J платформы с грузом) для 2-ого случая.

кг×м2.

Далее найдём момент инерции тела (Jт) исходя из аддитивности момента инерции по формуле:

Jт = J - Jпл;

Jт = (4,55 – 3,97)×10-3 = 5,8×10-4 кг×м2.

Найдём момент инерции того же тела через его массу и размеры (по формуле (5)):

кг×м2.

Вычислим суммарный момент инерции системы для 3-его случая.

кг×м2.

Для проверки аддитивности момента инерции надо убедиться в верности соотношения (2).


I = J + Jт = Jпл + 2Jт;

(45,5 +5,8)×10-4 = (39,7 + 2×5,8)×10-4 » (47,8 ±1,99)×10-4 кг×м2.

Остаётся проверить теорему Штейнера с использованием результатов измерений в 4-ом случае.

Определим момент инерции всей системы по формуле (28):

кг×м2.

Теперь рассчитаем момент инерции тела по приведённой ниже формуле.

Jт = (J - Jпл)/2;

Jт = 10-3×(5,92 – 3,97)/2 = 0,97×10-3 кг×м2.

Найдём момент инерции тела через выражение (8), при a = м.

0,58×10-3 + 187×10-7

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:43:50 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
22:50:10 28 ноября 2015

Работы, похожие на Контрольная работа: Определение моментов инерции тел методом трифилярного подвеса
Оборудование летательных аппаратов
Практическая работа N12-6 СИСТЕМА ВОЗДУШНЫХ СИГНАЛОВ СВС-72-3 (Продолжительность практической работы - 4 часа) I. ЦЕЛЬ РАБОТЫ Целью работы ячвляется ...
плече l, будет приложена сила инерции F, создающая относительно оси Z
Последний прикладывает к оси Z подвеса маятника момент об-
Раздел: Рефераты по авиации и космонавтике
Тип: реферат Просмотров: 11094 Комментариев: 8 Похожие работы
Оценило: 9 человек Средний балл: 3.7 Оценка: 4     Скачать
Кинематика и динамика поступательного движения
Общий физический практикум Часть I МЕХАНИКА ОГЛАВЛЕНИЕ Указания к выполнению лабораторных работ по механике .........4 Математическая обработка ...
Основное уравнение динамики вращательного движения твердого тела с моментом инерции J вокруг неподвижной оси z имеет вид
где - результирующий вращающий момент, - угловое ускорение, J = ml2 - момент инерции шарика относительно оси ОО$, проходящей через точку подвеса О, перпендикулярно плоскости ...
Раздел: Рефераты по физике
Тип: учебное пособие Просмотров: 12370 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Механика, молекулярная физика и термодинамика
Министерство образования Российской Федерации Омский государственный технический университет МЕХАНИКА, МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА Учебное ...
Задача 7 Круглая платформа радиусом R=1,0 м, момент инерции которой I=130 кг=м2, вращается по инерции вокруг вертикальной оси, делая n1=1,0 об/с. На краю платформы стоит человек ...
Две гири с разными массами соединены нитью, перекинутой через блок, момент инерции которого J=50 кг=м2 и радиус R=20 см.
Раздел: Рефераты по физике
Тип: учебное пособие Просмотров: 15981 Комментариев: 3 Похожие работы
Оценило: 1 человек Средний балл: 2 Оценка: неизвестно     Скачать
Законы сохранения механики
Содержание Лабораторная работа №1. Лабораторная установка "Модель копра" Лабораторная работа №2. Определение скорости пули методом физического ...
где - кинетическая энергия системы, - потенциальная энергия системы, I - момент инерции платформы вместе с исследуемым телом, М - масса платформы с телом, z0 - начальная координата ...
где I2 - момент инерции двух грузов с платформой; I0 - момент инерции пустой платформы; - момент инерции первого груза без платформы; I - момент инерции первого груза без платформы ...
Раздел: Рефераты по физике
Тип: лабораторная работа Просмотров: 13420 Комментариев: 1 Похожие работы
Оценило: 1 человек Средний балл: 2 Оценка: неизвестно     Скачать
Исследование движения центра масс межпланетных космических аппаратов
2. ИССЛЕДОВАТЕЛЬСКАЯ ЧАСТЬ 2.1. ВВЕДЕНИЕ В данной работе проводится исследование движения центра масс МКА под действием различных возмущающих ...
- тяга R, кг - 2000.
Чтобы найти возмущающее ускорение от нецентральности поля тяготения Земли в проекциях на оси абсолютной системы координат OXYZ, надо взять производные от возмущающего потенциала Uв ...
Раздел: Рефераты по астрономии
Тип: реферат Просмотров: 313 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Разработка алгоритмов контроля и диагностики системы управления ...
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ "ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ" Факультет І Кафедра "Системи та процеси ...
расположение относительно корпуса космического аппарата начального триэдра Ox"y"z". Таким образом, триэдр Ox"y"z", положение которого относительно корпуса непрерывно вычисляется ...
В рассматриваемом случае платформа не будет устанавливаться в кардановом подвесе, а будет иметь одну единственную ось вращения - ось Ox.
Раздел: Рефераты по авиации и космонавтике
Тип: реферат Просмотров: 3976 Комментариев: 2 Похожие работы
Оценило: 2 человек Средний балл: 3.5 Оценка: неизвестно     Скачать
Основы проектирования и конструирования
Основы проектирования и конструирования Конспект лекций для студентов специальности 060800 "Экономика и управление на предприятии" Составитель ...
. Момент инерции тонкого круглого однородного кольца радиусом R, массой М относительно оси, проходящей через центр кольца перпендикулярно его плоскости
Выберем систему координат х, у, z таким образом, чтобы ось z была направлена нормально к плоскости сечения, а х и у располагались в этой плоскости.
Раздел: Промышленность, производство
Тип: учебное пособие Просмотров: 16347 Комментариев: 3 Похожие работы
Оценило: 1 человек Средний балл: 4 Оценка: неизвестно     Скачать
Двухосный индикаторный стабилизатор телекамер на ВО
МГТУ им. Баумана. Факультет Информатики и систем управления. Кафедра ИУ-2. Расчетно-пояснительная записка к дипломной работе на тему: "Двухосный ...
В этом случае момент инерции платформы относительно собственной оси вращения значительно снижается, и тогда величина максимального момента двигателя стабилизации, выбираемая из ...
d/dt{(wt-kz+j)}=0 или w-kЧ(dz/dt)=0; dz/dt=vфаз; vфаз=w/k.
Раздел: Рефераты по технологии
Тип: реферат Просмотров: 269 Комментариев: 3 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Расчёт многокорпусной выпарной установки
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Омский Государственный Технический Университет Кафедра "Химическая технология органических веществ ...
r - теплота парообразования, кДж/кг;
где Н - высота аппарат, м; Еt - модуль нормальной упругости материала корпуса аппарата при рабочей температуре, МПа; Еt=2,00-105 МПа; J - момент инерции верхнего поперечного ...
Раздел: Рефераты по химии
Тип: курсовая работа Просмотров: 6887 Комментариев: 3 Похожие работы
Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать
Биокерамика на основе фосфатов кальция
Российская академия наук Институт физико-химических проблем керамических материалов С.М. Баринов, В.С. Комлев Биокерамика на основе фосфатов кальция ...
Кристаллы апатита ориентированы таким образом, что их продольная ось параллельна оси фибрилл.
84. LeGeros R.Z, Lin S., Rohanizaden R., Mijares D., LeGeros J.P. Biphase calcium phosphate bioceramics: preparation, properties and applications // J. Mater.
Раздел: Рефераты по химии
Тип: книга Просмотров: 5623 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Все работы, похожие на Контрольная работа: Определение моментов инерции тел методом трифилярного подвеса (4861)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151310)
Комментарии (1844)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru