Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Механічні й електромагнітні коливання

Название: Механічні й електромагнітні коливання
Раздел: Рефераты по физике
Тип: реферат Добавлен 14:22:14 01 апреля 2009 Похожие работы
Просмотров: 2467 Комментариев: 2 Оценило: 1 человек Средний балл: 4 Оценка: неизвестно     Скачать

РЕФЕРАТ

на тему:” Механічні й електромагнітні коливання


План

1. Гармонічні коливання і їх характеристики

2. Механічні гармонічні коливання

3. Гармонічний осцилятор. Пружинний, фізичний і математичний маятники

4. Вільні гармонійні коливання в коливальному контурі

1. Гармонічні коливання і їх характеристики

Коливаннями називаються рухи або процеси, які характеризуються певною повторюваністю в часі. Коливальні процеси широко поширені в природі й техніці, наприклад, коливання маятника годинника, змінний електричний струм і т.д. При коливальному русі маятника змінюється координата його центра мас, у випадку змінного струму - коливаються напруга й струм у ланцюзі. Фізична природа коливань може бути різною, тому розрізняють коливання механічні, електромагнітні й ін. Однак різні коливальні процеси описуються однаковими характеристиками й однаковими рівняннями. Звідси випливає доцільність єдиного підходу до вивчення коливань різної фізичної природи.

Коливання будуть вільними (або власними), якщо вони відбуваються за рахунок деякої енергії, переданої коливальній системі в початковий момент часу, при відсутності в наступні моменти часу будь-яких зовнішніх впливів на цю систему. Найпростішими коливаннями є гармонічні коливання, при яких коливна величина змінюється з часом за законом косинуса або синуса. Вивчення гармонічних коливань важливе з двох причин:

1) коливання, які зустрічаються у природі й техніці, при певних наближеннях є гармонічними;

2) різні періодичні процеси (процеси, які повторюються через рівні проміжки часу), можна подавати як суперпозицію гармонічних коливань.

Гармонічні коливання деякої фізичної величини х описуються таким рівнянням

(1)

де А- максимальне значення коливної величини x , яке називається амплітудою коливань ; - колова, або циклічна частота; φ - початкова фаза коливань для моменту часу t = 0; - фаза коливань для довільного моменту часу t. Так як косинус змінюється в межах від +1 до -1, то х може набувати значень від до -А.

Певні стани системи в процесі гармонічних коливань повторюються

через однаковий проміжок часу Т, який називається періодом коливань . За цей час фаза коливання зростає на 2π, тобто

звідки

(2)

Величина, обернена до періоду коливань

(3)

виконана коливною системою за одиницю часу, називається частотою коливань. Прирівнюючи (2) і (3), одержимо

ω0 = 2.

Одиницею частоти є герц (Гц), це частота такого періодичного процесу, при якому за 1 с відбувається одне повне коливання.

Запишемо першу й другу похідні фізичної величини х гармонічного коливання, тобто визначимо швидкість і прискорення коливання:

(4)

(5)

тобто маємо гармонічні коливання тієї ж циклічної частоти. Амплітуди величин (4) і (5) відповідно дорівнюють і . Фаза швидкості (4) відрізняється від фази фізичної величини (1) на π/2, а фаза прискорення (5) відрізняється від фази фізичної величини (1) на π.

Отже, у моменти часу, коли х = 0, має найбільші значення; коли ж x досягає максимальних від’ємних значень то в ці моменти часу будуть мати найбільші додатні значення (рис. 1).

З рівняння (5) одержуємо диференціальне рівняння гармонічних коливань (де враховано, що х = A cos (ωο t + φ)),

. (6)

Рис. 1

Таким чином, розв’язком диференціального рівняння (6) є вираз (1).

Гармонічні коливання можна зобразити графічно за допомогою методу обертання вектора амплітуди, або методу векторних діаграм. Для цього з довільної точки О, взятої на осі х, під кутом φ, який дорівнює початковій фазі коливання, відкладається вектор , модуль якого дорівнює амплітуді А гармонічного коливання (рис. 2).

Рис. 2

Якщо цей вектор привести до обертання з кутовою швидкістю то проекція кінця вектора буде переміщуватися по осі x і набувати значень від -А до + А, а коливна величина буде змінюватися з часом за законом х = A cos(ωο t + φ). У фізиці часто застосовується інший метод, який відрізняється від методу обертання вектора амплітуди лише за формою. У цьому методі коливну величину подають комплексним числом. Відповідно до формули Ейлера, для комплексних чисел

(7)

де - уявна одиниця. Тому рівняння гармонічного коливання (1) можна записати також в експонентній формі так:

(8)

Права частина рівняння (8) є рівнянням гармонічних коливань.

2. Механічні гармонічні коливання

Нехай матеріальна точка виконує прямолінійні гармонічні коливання уздовж осі координат x біля положення рівноваги, прийнятого за початок координат. Тоді залежність координати x від часу t задається рівнянням (1),

(9)

Відповідно до виразів (4) і (5) швидкість і прискорення а коливної точки будуть дорівнювати:

(10)

Сила F = ma , що діє на коливну матеріальну точку масою т, у відповідності з рівнянням (1) дорівнює

Отже сила, яка діє на матеріальну точку при гармонічних коливаннях, пропорційна зміщенню матеріальної точки від положення рівноваги і спрямована в протилежну сторону.

Кінетична енергія матеріальної точки, яка здійснює прямолінійні гармонійні коливання, дорівнює

(11)

або

К = (12)

Потенціальна енергія матеріальної точки, яка здійснює гармонічні коливання під дією пружної сили F, дорівнює

П = - (13)

або

П = (14)

Рис. 3

Додавши (13) і (14), одержимо формулу для повної енергії гармонічного коливання:

(15)

З формул (12) і (14) видно, що К і Π змінюються в часі з частотою, яка у два рази перевищує частоту гармонічного коливання. На рис. 3 показані графіки залежності х, К і Π від часу.

Оскільки середні значення то з формул (11), (13) і (15) випливає, що

3. Гармонічний осцилятор. Пружинний, фізичний і математичний маятники

Гармонічним осцилятором називається система, яка описується диференціальним рівнянням виду (6):

(16)

Коливання гармонічного осцилятора є важливим прикладом періодичного руху і служать точною або наближеною моделлю в багатьох задачах класичної і квантової фізики. Прикладами гармонічного осцилятора є пружинний, фізичний і математичний маятники, коливальний контур (для струмів і напруг настільки малих, щоб елементи контуру можна було вважати лінійними).

Пружинний маятник. Пружинний маятник – невеличке тіло масою т, яке підвішене до абсолютно пружної пружині і здійснює гармонічні коливання під дією пружної сили F = - kx , де k - коефіцієнт пружності, у випадку пружини, названий жорсткістю (рис. 4).


Рис.4

Диференціальне рівняння коливання маятника буде мати вигляд

або

(17)

З виразів (16) і (1) випливає, що пружинний маятник виконує гармонічні коливання за законом з циклічною частотою

і періодом

Формула (17) справедлива для пружних коливань у межах, для яких виконується закон Гука, тобто коли маса пружини мала в порівнянні з масою тіла.

В цьому випадку потенціальна енергія пружинного маятника, згідно (13) дорівнює

(18)

Фізичний маятник. Фізичний маятник – тверде тіло, яке під дією сили тяжіння виконує гармонічні коливання відносно нерухомої горизонтальної осі або підвісу, що не збігається з центром мас С тіла (рис. 5).

Якщо маятник відхилений від положення рівноваги на деякий кут , то відповідно до основного рівняння динаміки обертального руху твердого тіла момент Μ сили Fτ , яка повертає маятник до положення рівноваги буде дорівнювати

(19)

де J - момент інерції маятника відносно осі, яка проходить через точку О, l - відстань між точкою підвісу і центром мас маятника, – сила, яка повертає маятник у попереднє положення, (знак мінус обумовлений тим, що зростання і швидкості завжди протилежні; sinαα відповідає малим коливанням маятника, тобто малим відхиленням маятника від положення рівноваги.

Рис. 5

Рівняння (19) можна записати у вигляді

або

Приймаючи, що одержимо рівняння ідентичне з (16), розв’язком якого є функція:

(20)

З виразу (20) випливає, що при малих коливаннях фізичний маятник виконує гармонічні коливання з циклічною частотою і періодом

(21)

де – приведена довжина фізичного маятника.

Точка 0' на продовженні прямої 0С, яка відстоїть від осі підвісу на відстані приведеної довжини L, називається центром коливань фізичного маятника (рис. 5). Застосовуючи теорему Штейнера, можна показати, що 00' завжди більше 0С = l. Точка підвісу 0 і центр коливань 0' мають властивість взаємозамінності, якщо вісь підвісу перенести в центр коливань, то точка 0, в якій розміщувалась раніше вісь підвісу стане новим центром коливань і період коливань фізичного маятника не зміниться.

Математичний маятник. Математичний маятник – ідеалізована система, яка складається з матеріальної точки масою т, підвішеної на нерозтяжній невагомій нитці, і коливається під дією сили тяжіння (рис.6).

Гарним наближенням математичного маятника є невелика важка кулька, підвішений на тонкій довгій нитці. Момент інерції математичного маятника дорівнює

(22)

де l - довжина маятника.

Рис. 6

Так як математичний маятник можна подати як окремий випадок фізичного маятника, припустивши, що вся маса фізичного маятника зосереджена в одній точці – центрі мас, то, підставивши вираз (22) у формулу (21), одержимо знайомий вираз для малих коливань математичного маятника:

(23)

Порівнюючи формули (23) і (21), бачимо, що якщо приведена довжина L фізичного маятника дорівнює довжині l математичного маятника, то їх періоди коливань збігаються. Отже, приведена довжина фізичного маятника – це довжина такого математичного маятника, період коливань якого збігається з періодом коливань даного фізичного маятника.

4. Вільні гармонійні коливання у коливальному контурі

Серед різних електричних явищ особливе місце займають електромагнітні коливання, при яких фізичні величини (заряди, струми, електричні і магнітні поля) періодично змінюються. Для виникнення і підтримування електромагнітних коливань необхідні певні системи, найпростішою з який є коливальний контур – ланцюг, який складається з увімкнених послідовно котушки індуктивністю L , конденсатора ємністю С і резистора опором R.

Розглянемо послідовні стадії коливального процесу в ідеалізованому контурі, опір якого безмежно малий Для виникнення в контурі коливань конденсатор попередньо заряджають, надаючи його обкладкам заряди Q. Тоді в початковий момент часу (рис. 5, а) між обкладками конденсатора виникне електричне поле, енергія якого

Замкнувши конденсатор на котушку індуктивності, він почне розряджатися й у контурі потече зростаючий з часом струм I . У результаті енергія електричного поля буде зменшуватися, а енергія магнітного поля котушки – зростати.

Так як , то, відповідно до закону збереження енергії, повна енергія контуру буде дорівнювати

тому що енергія на нагрівання провідників у такому коливальному контурі не витрачається. У момент часу , коли конденсатор повністю розрядиться, енергія електричного поля зменшується до нуля, а енергія магнітного поля, а отже, і струм досягають найбільшого значення (рис. 5,б). Починаючи з цього моменту часу струм у контурі буде зменшуватися; отже, почне слабшати магнітне поле котушки й індукований у ній струм, який тече (відповідно до правила Ленца) у тому ж напрямку, що й струм розрядки конденсатора. Конденсатор почне перезаряджатися, при цьому виникне електричне поле, яке намагатиметься послабити струм, який зрештою зменшується до нуля, а заряд на обкладках конденсатора досягне максимуму (рис. 5, в). Далі ті ж процеси почнуть протікати в зворотному напрямку (рис. 5, г) і система до моменту часу t = Τ прийде в початковий стан (рис. 5, а). Після цього почнеться повторення розглянутого циклу розрядки і зарядки конденсатора.

Якби втрат енергії не було, то в контурі відбувалися б періодичні незатухаючі коливання, тобто періодично змінювалися (коливалися) б заряд Q на обкладках конденсатора, напруга U на конденсаторі і сила струму I , яка тече через котушку індуктивності.

Отже, у контурі виникають електричні коливання з періодом Т , причому протягом першої половини періоду струм тече в одному напрямку, протягом другої половини – у протилежному. Коливання супроводжуються перетвореннями енергій електричних і магнітних полів.

Електричні коливання у коливальному контурі можна зіставити з механічними коливаннями маятника (рис. 7), які супроводжуються взаємними перетвореннями потенціальної і кінетичної енергій маятника.

У даному випадку потенціальна енергія маятника аналогічна енергії електричного поля конденсатора , кінетична енергія маятника – енергії магнітного поля котушки , а швидкість руху маятника – силі струму в контурі.


Рис.7

Роль інерції маятника буде зводитися до самоіндукції котушки, а роль сили тертя, яке діє на маятник – до опору контуру.

Відповідно до другого правила Кірхгофа, для контуру, який містить котушку індуктивністю L , конденсатор ємністю С и резистор опором R маємо

,

де IR – спад напруги на резисторі, - напруга на конден-саторі, - е. р. с. самоіндукції, яка виникає в котушці при проті-канні в ній змінного струму ( - єдина е.р.с. у контурі).

Отже,

. (24)

Розділивши (24) на L і підставивши і , одержимо диференціальне рівняння коливань заряду Q у контурі:

(25)

У даному коливальному контурі зовнішні е. р. с. відсутні, тому розглянуті коливання є вільними коливаннями. Якщо опір R = 0, то вільні електромагнітні коливання у контурі є гармонічними. Тоді з (25) одержимо диференціальне рівняння вільних гармонічних коливань заряду Q в контурі:

(26)

З виразу (26) випливає, що заряд Q в коливальному контурі виконує гармонічні коливання за законом

(27)

де Qm — амплітуда коливань заряду конденсатора з циклічною частотою ω0 , яка називається власною частотою контуру:

(28)

і періодом

(29)

Формула (29) вперше була отримана Томсоном і називається формулою Томсона.

Сила струму в коливальному контурі буде дорівнювати

(30)

де - амплітуда сили струму.

Напруга на конденсаторі

(31)

де — амплітуда напруги.

З виразів (30) і (31) випливає, що коливання струму I випереджають по фазі коливання заряду Q на π/2, тобто коли струм досягає максимального значення, заряд (а також і напруга звертаються в нуль і навпаки. Цей взаємозв'язок був установлений при розгляді послідовних стадій коливального процесу в контурі і на підставі енергетичних міркувань. Вільні електромагнітні коливання в контурі є незатухаючими.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:43:27 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
22:49:59 28 ноября 2015

Работы, похожие на Реферат: Механічні й електромагнітні коливання
Електроніка та мікропроцесорна техніка
Інструкційна картка №1 для самостійного опрацювання навчального матеріалу з дисципліни "Основи електроніки та мікропроцесорної техніки" І. Тема: 1 ...
а - коливальний контур; б - розряджання конденсатора; в - графік затухаючих коливань.
Струм розряду Ск змінюється за синусоїдним законом, бо Lk з Ск являють собою послідовний резонансний коливальний контур.
Раздел: Рефераты по коммуникации и связи
Тип: учебное пособие Просмотров: 11870 Комментариев: 3 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Розробка інвертора напруги для апаратури зв'язку
Содержание Вступ 1. Системи електропостачання 1.1 Види систем електроживлення 1.2 Планування систем електроживлення 1.3 Вимоги до систем ...
Такі відмінності обумовлені тим, що у випадку з джерелом напруги у вигляді модифікованої синусоїди конденсатор заряджає від імпульсного джерела напруги з високою швидкістю зміни ...
Параметри комутуючого контура вибираються так, щоб забезпечити коливальний характер анодного струму тиристорів.
Раздел: Рефераты по физике
Тип: дипломная работа Просмотров: 4188 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Фізика напівпровідників
Міністерство освіти і науки України Український державний університет водного господарства і природокористування Кафедра фізики 073-90 В.О.Дубчак, М.О ...
Дія магнітного поля на контур зі струмом.
Конденсатор заряджається від джерела постійної напруги (ключ К в положенні 1) і в момент часу t=0 під"єднується до котушки (ключ К в положенні 2). Процес розрядки конденсатора ...
Раздел: Рефераты по физике
Тип: учебное пособие Просмотров: 4912 Комментариев: 2 Похожие работы
Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать
Електропоїзди постійного струму
Вступ Електропоїзди постійного струму призначені для перевезення пасажирів на лініях приміського руху, електрифікованих на постійному струмі з ...
Через те, що напрямок струму розряду коммутирующего конденсатора Ск на цій стадії збігається з напрямком струму порушення ів, останній трохи підвищується.
Якщо падіння напруги на них буде рівне падінню напруги на обмотках збудження тягових двигунів, то перехід на самозбудження і відключення контура незалежного збудження контакторами ...
Раздел: Рефераты по транспорту
Тип: дипломная работа Просмотров: 2873 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Теорія електричних і електронних кіл
Міністерство освіти і науки України Запорізька державна інженерна академія . Турба М.М., Юдачов А.В., ТЕОРІЯ ЕЛЕКТРИЧНИХ І ЕЛЕКТРОННИХ КІЛ, ч. II ...
... схему за допомогою перемикача, або, натиснувши на клавіатурі Ctrl+G. Дочекатися появи зображення на екрані віртуального осцилографа і замалювати осцилограми вхідної напруги і ...
Для компенсації не основних носіїв заряду тих, що накопичуються в p і n-областях в зовнішньому ланцюзі виникає електронний струм від джерела напруги, тобто принцип ...
Раздел: Рефераты по физике
Тип: учебное пособие Просмотров: 4791 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Комп"ютерна електроніка
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ЧЕРНІВЕЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ЮРІЯ ФЕДЬКОВИЧА Факультет комп"ютерних наук Кафедра комп"ютерних ...
Обов'язковою умовою працездатності транзистора є мала ширина базової області порівняно з довжиною вільного пробігу носіїв заряду, який інжектується з емітера в базу.
Нехай на одному виході в певний момент часу напруга приймає максимальне значення, тобто логічну 1, на іншому -логічний 0. Тоді за рахунок заряду конденсатора, що з"єднаний з ...
Раздел: Рефераты по коммуникации и связи
Тип: курсовая работа Просмотров: 6075 Комментариев: 2 Похожие работы
Оценило: 2 человек Средний балл: 4.5 Оценка: неизвестно     Скачать
Розвиток і вдосконалення льотної промисловості України
... електропостачання; ЕЕС - електроенергетична система; РП - розподільчий пункт; ЦЖ - центр живлення; ЛЕП - лінія електропередач; ВН - висока напруга; ...
Заряд акумуляторної батарея здійснюється зарядним устрій (ЗУ) за наявності напруги на шинах розподільного пристрою (РУ) Первинний пуск трьохмашинного агрегату здійснюється двигуном ...
Електричний струм
Раздел: Рефераты по экономике
Тип: дипломная работа Просмотров: 2047 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Діагностика системи запалення ДВЗ
ЗМІСТ Вступ і постановка завдання 1 Призначення та різновиди систем запалення 1.1 Джерело живлення для системи запалювання 1.2 Вимикач запалювання 1.3 ...
Але це тільки половина корисної роботи конденсатора - коли контакти переривника повністю розмикаються, конденсатор розряджається, створюючи зворотний струм у ланцюзі низької ...
У дійсності пробивна напруга Uпр нижче максимальної вторинної напруги U2m, що розвиває системою запалювання, і тому, що як тільки зростає напруга досягає значення Uпр, у свічі ...
Раздел: Рефераты по транспорту
Тип: дипломная работа Просмотров: 10434 Комментариев: 6 Похожие работы
Оценило: 3 человек Средний балл: 4 Оценка: неизвестно     Скачать
Фізичні основи роботи комп"ютера
Міністерство освіти і науки України Донецький національний університет Фізичний факультет Кафедра загальної фізики і дидактики фізики До захисту ...
Дія електронних ламп заснована на керуванні струмом електронів, що йдуть від електрода (катода), що нагрівається, до електрода, що збирає (анода).
Електрони ж зовнішньої оболонки зв'язані слабкіше; як валентні електрони вони можуть брати участь в хімічних процесах, а як електрони провідності - переносити електричний заряд ...
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 2025 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Все работы, похожие на Реферат: Механічні й електромагнітні коливання (961)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151115)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru