Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Курсовая работа: Теория автоматического управления

Название: Теория автоматического управления
Раздел: Рефераты по коммуникации и связи
Тип: курсовая работа Добавлен 11:39:53 28 февраля 2010 Похожие работы
Просмотров: 930 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

1. Анализ устойчивости замкнутой системы

1.1 Анализ устойчивости системы по корням характеристического уравнения

Запишем передаточную функцию разомкнутой системы:

. (1)

Передаточная функция замкнутой системы имеет вид:

.

Характеристическое уравнение замкнутой системы:

(2)

Корни характеристического уравнения (2):

Характеристическое уравнение (2) имеет два правых корня, следовательно, данная замкнутая система неустойчива.

1.2 Анализ устойчивости системы по алгебраическому критерию

Для характеристического уравнения (2) замкнутой системы коэффициенты ai , i =0..3 ,

а0 =0.00008,

a 1 =0.0078,

a 2 = – 0.03,

a 3 =48.

Необходимым условием устойчивости системы является:

ai >0, i =0..3

Данное условие не выполняется (a 2 <0 ), следовательно, замкнутая система неустойчива.

1.3 Анализ устойчивости системы по частотным критериям

а) Критерий Найквиста (на комплексной плоскости)

Используя передаточную функцию разомкнутой системы (1) запишем характеристическое уравнение разомкнутой системы:

. (3)

Найдем корни характеристического уравнения (3):

Характеристическое уравнение разомкнутой системы (3) имеет один правый корень, следовательно, разомкнутая система неустойчива.

Построим годограф Найквиста. Для этого определим частотную передаточную функцию разомкнутой системы и ее действительную и мнимую части.

(4)

(5)

(6)


Используя выражения (5) и (6), заполним таблицу:

Таблица 1.3.1

w

0

-

-

P

-48

0

-

0

Q

0

-

0

0

Построим годограф Найквиста (Рис. 1.3.1):

Рис. 1.3.1

Для случая, когда разомкнутая система неустойчива критерий Найквиста звучит следующим образом: для устойчивости замкнутой системы необходимо и достаточно, чтобы годограф Найквиста охватывал особую точку (; ) в положительном направлении на угол , где l число правых корней характеристического уравнения разомкнутой системы.

Число правых корней характеристического уравнения разомкнутой системы (3) равно единице (l = 1), полученный годограф не охватывает особую точку (-1, j0) на угол l π=π (годограф охватывает особую точку в направлении по часовой стрелке), следовательно, критерий Найквиста не выполняется и система неустойчива.

б) Критерий Найквиста (на плоскости ЛЧХ)

Построим ЛЧХ заданной системы, для этого определим расчетные выражения для L ( w ) и φ( w ) :


(7)

(8)

Для построения асимптотической ЛАЧХ найдем параметры:

ЛФЧХ системы также можно построить как геометрическую сумму ЛФЧХ отдельных звеньев системы.

Графики расчетных ЛЧХ, построенные по формулам (7) и (8) изображены на рисунке (1.3.2):

Рис. 1.3.2

wср (частота среза) – частота, соответствующая пересечению ЛАЧХ с осью lgw;

wкр (критическая частота) – частота, соответствующая пересечению ЛФЧХ уровня –π;

Система устойчива, если выполняется условие:

wср < wкр

Данное условие не выполняется, следовательно, система неустойчива. Аналогичный вывод можно сделать по асимптотической ЛАЧХ и ЛФЧХ системы, построенной как сумма отдельных звеньев, входящих в систему, изображенной на рисунке (1.3.3):

в) Критерий Михайлова

Используя характеристическое уравнение замкнутой системы (2) введем функцию Михайлова:

, где

,

.

Для заданной системы функция Михайлова примет вид:

(9)

(10)

Графическое изображение функции Михайлова на комплексной плоскости при называется годографом Михайлова. Для устойчивости системы n-го порядка необходимо и достаточно, чтобы годограф Михайлова начинался на вещественной положительной полуоси и при увеличении частоты до ∞ проходил последовательно в положительном направлении n квадрантов, нигде не обращаясь в ноль.

Используя выражения (9) и (10), заполним таблицу:


Таблица 1.3.3

w

0

77,625

-

X ( w )

47

0

-

-∞

Y ( w )

0

-39,748

0

-∞

Построим годограф Михайлова (Рис. 1.3.4):

Рис. 1.3.4

Полученный годограф начинается на вещественной положительной полуоси, проходит 2 квадранта в отрицательном направлении, таким образом, критерий Михайлова не выполняется, следовательно, система неустойчива.


2. Построение области устойчивости в плоскости параметра Кр

Построим область устойчивости, используя критерий Гурвица.

Запишем характеристическое уравнение замкнутой системы в общем виде:

.

Для конкретного случая характеристическое уравнение замкнутой системы имеет вид:

(11)

Для устойчивости системы КР должно удовлетворять необходимому условию

Рис. 2.1

Но заметим, что исходный КР удовлетворяет этому условию, и его изменением устойчивости замкнутой системы добиться невозможно, т. к. в ХУ ЗС (2.3) а2 <0, и зависит этот коэффициент от постоянных времени.

Построим область устойчивости в плоскости параметра Т2

Необходимое условие устойчивости:


Достаточное условие устойчивости для системы третьего порядка по критерию Гурвица имеет вид:

Учитывая все условия:

Рис. 2.2


3. Коррекция системы

Для обеспечения устойчивости системы необходимо ввести корректирующее звено с передаточной функцией вида:

Структурная схема скорректированной системы (Рис. 3.1):

Рис. 3.1

Передаточная функция скорректированной разомкнутой системы имеет вид:

(12)

Определим параметр Т из условия обеспечения минимального запаса устойчивости (L зап =5 дБ ).

Запас по амплитуде определяется на критической частоте – частоте, на которой функция φ ( w ) принимает значение, равное

Расчетное выражение для φ ( w ) :


, отсюда

(13)

Расчетное выражение для L ( w ) :

(14)

Подставим найденное выражение Т (13) в функцию L ( w ) (14):

На критической частоте значение функции L ( w ) , исходя из условия обеспечения минимального запаса устойчивости, должно быть равно не менее 5 дБ.

Из данного выражения найдем w кр

w кр =308,4185, следовательно,

Т=0,001198

Анализируя данное значение и область устойчивости, найденную в п. 2, можно сделать вывод, что введение корректирующего звена с передаточной функцией обеспечит не только устойчивость системы, но и более чем минимальный запас устойчивости по амплитуде.


4. Построение и анализ ЛЧХ системы и годографа Найквиста скорректированной системы

Используя передаточную функцию скорректированной разомкнутой системы (12), запишем характеристическое уравнение скорректированной разомкнутой системы:

(15)

Найдем корни характеристического уравнения (15):

Уравнение (15) имеет один правый корень, следовательно, скорректированная разомкнутая система неустойчива.

Построим годограф Найквиста. Для этого определим частотную передаточную функцию скорректированной разомкнутой системы и ее действительную и мнимую части.

(16)

(17)

Используя выражения (16) и (17), заполним таблицу:


Таблица 4.1

w

0

-

328,8237

P

-48

0

-0,485

0

Q

0

-

0

0

Построим годограф Найквиста (Рис. 4.1):

Рис. 4.1

Для случая, когда разомкнутая система неустойчива критерий Найквиста звучит следующим образом: для устойчивости замкнутой системы необходимо и достаточно, чтобы годограф Найквиста охватывал особую точку (; ) в положительном направлении на угол , где l число правых корней характеристического уравнения разомкнутой системы.

Число правых корней характеристического уравнения разомкнутой системы равно единице (l = 1), полученный годограф охватывает особую точку (-1, j0) на угол l π=π, следовательно, критерий Найквиста выполняется и система устойчива.

Построим ЛЧХ разомкнутой скорректированной системы:

Определим расчетные выражения для L ( w ) и φ( w ) :

(18)

(19)


Для построения асимптотической ЛАЧХ найдем параметры:

ЛФЧХ системы также можно построить как геометрическую сумму ЛФЧХ отдельных звеньев системы.

Графики расчетных ЛЧХ, построенные по формулам (18) и (19), изображены на рисунке (4.2):

Рис. 4.2

wср (частота среза) – частота, соответствующая пересечению ЛАЧХ с осью lgw;

wкр (критическая частота) – частота, соответствующая пересечению ЛФЧХ уровня –π;

Система устойчива, если выполняется условие:

wср < wкр

Данное условие выполняется, следовательно, система устойчива. Запас устойчивости по амплитуде: L зап = 5,8 дБ

Запас устойчивости по фазе: φзап =0,2 рад

Аналогичный вывод можно сделать по асимптотической ЛАЧХ и ЛФЧХ системы, построенной как сумма отдельных звеньев, входящих в систему.


5. Анализ качества системы в переходном режиме

Определим прямые показатели качества, для этого построим переходную характеристику:

, где (20)

(21)

Ф( s ) – передаточная функция скорректированной замкнутой системы.

Переходная характеристика, построенная по формуле (20), изображена на рисунке (5.1):

Рис. 5.1

По рисунку (5.1) определим: hmax =0.3; h уст =0.17; h (0) =0, время регулирования на уровне 0.05 (hуст -h(0)).

Коридор: [0.95 (hуст -h(0)); 1.05 (hуст -h(0))].

Коридор: [0.1615; 0.1785].

Время регулирования: t рег = 0,15 с.

Перерегулирование равно:

(5.3)

.

Определим показатель коллебательности. Используя передаточную функцию скорректированной замкнутой системы (21), запишем частотную передаточную функцию скорректированной замкнутой системы:

Выделим действительную и мнимую части:

Модуль частотной передаточной функции замкнутой системы:

(22)

Построим амплитудно-частотную характеристику, используя выражение (22) (Рис. 5.2):


Рис. 5.2

По рисунку (5.2) определим: ; .

Показатель колебательности M есть отношение максимальной ординаты амплитудно-частотной характеристики замкнутой системы к начальной ординате:

Определим запасы устойчивости системы.

Найдем критическую частоту – частоту, на которой значение φ( w ) равняется –π.

(23)

w кр =328,824

Рассчитаем запас по амплитуде:


(24)

Запас по амплитуде: L зап = 5,797 дБ

Найдем частоту среза – частоту, на которой значение L ( w ) равняется 0, используя выражение (24):

w ср =232,624

Рассчитаем запас по фазе, используя выражение (23):

Запас по фазе: φзап =0,168 рад.


6. Анализ качества системы в установившемся режиме

Установившаяся ошибка системы равна:

(25)

εустХо0 Х0 (t)+ С1 Х'0 (t)+…

εуст f0 F0 (t)+ С1 F'0 (t)+…

Так как в заданном случае задающее и возмущающее воздействия – константы, необходимо найти лишь первые коэффициенты функций ошибок.

Запишем передаточную функцию замкнутой системы по ошибке по задающему воздействию:

Установившаяся ошибка системы по задающему воздействию:

Запишем передаточную функцию замкнутой системы по ошибке по возмущению:

Установившаяся ошибка системы по задающему воздействию:

Рассчитаем установившуюся ошибку системы, используя выражение (25):

Приведем размерность установившейся ошибки к размерности входного сигнала:

;

Система является статической как относительно возмущения, так и относительно задающего воздействия, установившаяся ошибка системы равна 7/282.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений08:24:46 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
22:43:14 28 ноября 2015

Работы, похожие на Курсовая работа: Теория автоматического управления

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151045)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru