Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Статистические оценки критериев надежности РЭСИ

Название: Статистические оценки критериев надежности РЭСИ
Раздел: Рефераты по коммуникации и связи
Тип: реферат Добавлен 01:31:26 25 января 2009 Похожие работы
Просмотров: 132 Комментариев: 3 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Министерство образования Республики Беларусь

Белорусский государственный университет информатики и

радиоэлектроники

кафедра РЭС

РЕФЕРАТ

на тему:

«СТАТИСТИЧЕСКИЕ ОЦЕНКИ КРИТЕРИЕВ НАДЕЖНОСТИ РЭСИ»

МИНСК, 2008

Результаты эксплуатации РЭСИ и ее элементов могут быть использованы для получения экспериментальных значений их критериев надежности.

Такие критерии всегда являются приближенными, так как получены по ограниченному объему экспериментальных данных и, следовательно, всегда содержат элемент случайности. Ошибку критерия надежности, полученного экспериментальным путем, можно оценить с помощью доверительного интервала (при заданной доверительной вероятности). Доверительным интервалом называют область всех возможных значений критерия надежности, которые могут быть получены в результате данного эксперимента. Доверительная вероятность указывает, насколько вероятно нахождение экспериментального значения критерия надежности внутри границ доверительного интервала.

Любое приближенное значение Х * критерия Х надежности, вычисленное на основе ограниченного числа реализаций, называется оценкой критерия. Естественно, чтобы при увеличении n она приближалась (сходилась по вертикали) к искомому параметру распределения Х . Оценка, обладающая таким свойством, называется состоятельной. Желательно также, чтобы при использовании оценки Х * вместо действительного значения Х критерия надежности не было математической ошибки в расчетах, т.е. чтобы выполнялось условие т(х*)=х. Оценка, удовлетворяющая такому условию, называется несмещенной. Особенно это важно при малом объеме экспериментальных данных. И, в третьих, желательно, чтобы выбранная оценка имела по сравнению с другими наименьшую дисперсию. Такая оценка называется эффективной.

Практически не всегда удается найти оценку критерия, которая бы удовлетворяла всем перечисленным требованиям.

Вид формулы оценки критерия надежности зависит от его закона распределения, и от типа выборочного плана испытаний (или эксплуатации).

Рассмотрим правила определения оценок и доверительных границ для параметров экспоненциального распределения и распределения Пуассона.

Определение данных параметров проводится для расчета характеристик надежности по результатам специально организованных испытаний. В нижеследующей таблице приведем характеристики 12 наиболее часто встречающихся планов испытаний на надежность:

Таблица 1 - Характеристики планов испытаний на надежность

План, индекс плана j, выражения для mj , sj Описание плана
1 2
Планы для объектов не восстанавливаемых в процессе испытаний

[ N, R, T,]

0≤ m1 N

S1 = N- T

m - число отказов

S - наработка

План испытаний, согласно которому начинают испытывать N объектов; отказавшие во время испытаний объекты заменяются новыми, а испытания прекращаются по истечении времени Т .

[ N, R, r]

m2 = r > 0

S2 = N- Xr

Xr - наработка i- го объекта до r отказа

План испытаний, согласно которому начинают испытывать N объектов, отказавшие во время испытаний объекты заменяются новыми, а испытания прекращаются, когда число отказавших объектов достигает r .

[N,R,(r,T)]

S3=S1 или S2

m3 = m1 или m2

(см. п.2)

План испытаний, согласно которому начинают испытывать N объектов, отказавшие во время испытаний объекты заменяются новыми, а испытания прекращаются, когда число отказавших объектов достигает r , или по истечении времени Т - в зависимости от того, какое из этих условий будет выполнено раньше.

[N,U,T]

0≤m4 ≤N

План испытаний, согласно которому начинают испытывать N объектов, отказавшие во время испытаний объекты новыми не заменяются, а испытание прекращается по истечении времени Т

[N,U,r]

m5 =r>0

План испытаний, согласно которому начинают испытывать N объектов, отказавшие объекты новыми не заменяются, а испытания прекращаются, когда число отказавших объектов достигает r . При r = N имеет случай полностью определенной выборки.

[N,U,(r,T)]

m6 =m4 или m5

S6 =S4 или S5

См. п.3
Планы для восстанавливаемых объектов

[ N, M,T]

m>0

S7 = N- T

План испытаний, согласно которому испытаниям подлежат N объектов; после каждого отказа работоспособность каждого объекта восстанавливается, объекты испытываются до наработки Т .

[ N,m,r]

m8 = r>0

План испытаний, согласно которому испытаниям подлежат N объектов; после каждого отказа работоспособность объекта восстанавливается, каждый
объект испытывается до возникновения у него r отказов

[N,M,(r,T)]

0≤m9 ≤Nr

0≤S9 ≤N T

План испытаний, согласно которому испытаниям подлежат N объектов; после каждого отказа работоспособность объекта восстанавливается, каждый объект испытывается либо до возникновения у него r отказов, либо до наработки T , в зависимости от того, какое из этих условий будет выполнено раньше

[ N, m, rΣ ]

m10 = rΣ >0

X" -наработка К -го элемента полностью за время испытаний.

План испытаний, согласно которому испытаниям подлежат N объектов; после каждого отказа работоспособность объекта восстанавливается, испытания прекращаются при возникновении суммарного числа rΣ отказов с учетом всех объектов

[N,M,TΣ ]

m11 ≥0

S11 = TΣ

План испытаний, согласно которому испытаниям подлежат N объектов; после каждого отказа работоспособность объекта восстанавливается, испытания прекращаются при получении ТΣ суммарной наработки всех объектов

[ N, M,( rΣ , TΣ )] m12 = m10 или m11

S12 =S10 или S 11

План испытаний, согласно которому испытаниям подлежат N объектов; после каждого отказа работоспособность объекта восстанавливается, испытания прекращаются при возникновении суммарного числа rΣ отказов с учетом всех объектов или при получении Т Σ - суммарной наработки всех объектов, в зависимости от того, какое из этих условий будет выполнено раньше

Все планы можно разделить на три группы:

планы с индексом R , т.е. планы испытаний не восстанавливаемых изделий, согласно которым отказавшие во время испытаний изделия заменяются новыми;

планы с индексом U , т.е. планы испытаний невосстанавливаемых объектов, согласно которым отказавшие изделия не заменяются новыми;

планы с индексом М, т. е. планы испытаний восстанавливаемых объектов, согласно которым после отказа работоспособность объекта восстанавливается.

Таким образом при обозначении плана испытаний:

первая буква обозначения плана означает, что на испытание было поставлено N изделий;

вторая буква - характеризует выборку (возвратная или безвозвратная);

третья буква r,T- обозначает ограничение испытаний, т.е.:

r - испытания ведутся до получения ожидаемого числа отказов r ;

Т - испытания прекращаются по истечении заданного времени Т ;

При испытании невосстанавливаемых объектов по плану NUr при r=N получаем полностью определенную выборку, т.е. такую выборку, в которой все значения X1 ,X2 ,.., Xn случайной величины Х определены. При остальных планах испытаний получают не полностью определенные выборки, т.е. такие в которых известны m значений случайной величины Х ( m < n )/

При испытании восстанавливаемых объектов по плану NMr при любом r получают полностью определенную выборку, при прочих - не полностью определенные выборки.

Планы испытаний [ N , U ,( r , T )],[ N , M ,( r , T )],[ N , R ,( r , T )],[ N , M ,( rΣ , TΣ )] называют

двойственными, в отличие от остальных простых планов.

При испытании по двойственным планам получают обычно результат, соответствующий одному из двух простых планов, кроме плана [ N , M ,( r , T )].

Дадим графическую интерпретацию отдельных планов:

NRT

NUT

Определение оценок параметров экспоненциального распределения

Экспоненциальное распределение имеет один параметр λ , который связан со средним значением α случайной величины Х соотношением: λ=1/α; Таким образом в дальнейшем, оценку среднего значения α случайной величины Х будем обозначать через Х , оценка параметра λ будет обозначаться через λ .

Выражения для оценки параметров Х и λ приведены в таблицах 2, 3

Таблица 2 - Выражение для оценки Х

Случай X
Полностью определенная выборка Несмещенная оценка
Испытания по планам [ nrt],[ nmt],[ nmtΣ ] Смещенная оценка при m>0 S/ m
Испытание по плану [NUT] Смещенная оценка при m>0 S/ m
Испытания по планам [ NRr], [ NUr], [ NMr], [ NMrΣ ] Несмещенная оценка при m>0 S/ m

S - суммарная наработка объекта во время испытаний;

m - суммарное число отказов (m>0 ).

Данной таблицей можно пользоваться и для двойственных планов, входя в данную таблицу с тем простым планом, к которому привели результаты испытаний по двойственному плану.

Рассмотрим выражения для оценки λ для различных планов:

Таблица 3 - Выражения для оценок λ

Случай λ

Полностью определенная выборка

Несмещенная оценка при n>1

Испытания по планам: [ NRT], [ NMT], [ NMrΣ ] Смещенная оценка при n=1 1/ x1
Испытания по плану [NUT] Смещенная оценка m/S

Испытания по планам

[ NRr], [ NUr], [ NMr], [ NMrΣ ]

Несмещенная оценка при m>1 m-1/ S Смещенная оценка при m=1 1/S

Определение доверительных границ для параметров экспоненциального распределения

Выражения для λH и λ B , α H и α B при односторонней доверительной вероятности представлены в таблице 4.

Таблица 4 - Значения параметров αH , αB , λH , λB

Случай ан ав λн λв
1 .Полностью определенная выборка.

r3 *X

r1 *X

n>1

λ /r5

n=1

λ /r1

n>1

λ /r4

n=1

λ /r3

2.Испытания по планам [ NRT]; [ NMT]; [ NMTΣ ]

m>0 r2 *X

m=0

S/r0

m>0 r1 *X

m=0

m>0

λ /r1

m=0 0

m>0

λ /r2

m=0

r0 /S

3 .Испытания по плану [NUT]

m>0

/lnРн

m=0

S/r0

m>0

/lnРв

m=0

m>0

-lnPв/T

m=0

r0 /S

m>0

-lnPн/T

m=0

r0 /S

Испытания по планам [ NRr]; [ NUr]; [ NMr]; [ NMrΣ ]

R3 *X

R1 *X

m>1

λ /r5

m=1

λ /r1

m>1

λ /r4

m=1

λ /r3

Значения оценки λ определяется по соответствующей строке таблицы 4, коэффициенты r 1 , r2 , r3 , r4 , r5 , r0 определяются по соответствующим графам таблиц по доверительной вероятности γ, значениям m и n.

Доверительные границы для α плана [ NUT ] находят из п.3 таблицы 4, при этом:

(1)

, (2)

где

; (3)

. (4)

; (5)

; (6)

. (7)

; (8)

Коэффициенты r 1 и r2 находят по таблице в зависимости от значения j и m .

Коэффициенты r1 ' и r2 ' находят по этим же таблицам, в которые входят по значениям j и m '= N - m .

Доверительные границы для λ H и λ B в случае плана [ N , U , T ] находят с помощью уравнений предыдущего пункта при:

(9)

Распределение Пуассона

Распределение Пуассона имеет один параметр а , который равен математическому ожиданию случайной величины. Оценка данного параметра дается формулой:

α=К , (10)

где К - наблюдаемое значение случайной величины. Соответственно:

α H =К/ r 1 и αв =К/г3 , если К≠0 . (11)

Если К=0, α H =0, α B = r 0 , то соответственно r0 , r1 ,r2 находят по соответствующим таблицам по значению j и m=К .

Если из партии изделий объема N берется выборка объема n , то случайное число К дефектных изделий в выборке имеет Пуассоновское распределение при выполнении 2-х условий:

n<0,1N ,

доля q дефектных изделий в партии не превосходит 0,1.

При выполнении этих условий а = n q

Оценка доли дефектных изделий q в партии находят по формуле:

q = K / n

и доверительные границы:

при К≠0 имеем q н = q / r 1 и q в = q / r 2 , при К=0 имеем q в = r 0/ n и q н =0 .


ЛИТЕРАТУРА

1. Глудкин О.П. Методы и устройства испытания РЭС и ЭВС. – М.: Высш. школа., 2001 – 335 с

2. Испытания радиоэлектронной, электронно-вычислительной аппаратуры и испытательное оборудование/ под ред. А.И.Коробова М.: Радио и связь, 2002 – 272 с.

3. Млицкий В.Д., Беглария В.Х., Дубицкий Л.Г. Испытание аппаратуры и средства измерений на воздействие внешних факторов. М.: Машиностроение, 2003 – 567 с

4. Национальная система сертификации Республики Беларусь. Мн.: Госстандарт, 2007

5. Федоров В., Сергеев Н., Кондрашин А. Контроль и испытания в проектировании и производстве радиоэлектронных средств – Техносфера, 2005. – 504с.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений08:24:23 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
15:11:33 29 ноября 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
22:43:06 28 ноября 2015

Работы, похожие на Реферат: Статистические оценки критериев надежности РЭСИ

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150917)
Комментарии (1842)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru