Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Системы с прерывистым входным сигналом. Математическое описание дискретных систем

Название: Системы с прерывистым входным сигналом. Математическое описание дискретных систем
Раздел: Рефераты по коммуникации и связи
Тип: реферат Добавлен 10:30:16 27 января 2009 Похожие работы
Просмотров: 128 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра РТС

РЕФЕРАТ

На тему:

"Системы с прерывистым входным сигналом. Математическое описание дискретных систем "

МИНСК, 2008

Системы с прерывистым входным сигналом. Функциональные схемы

В радиотехнических системах часто в качестве носителя информации используют импульсный сигнал (импульсные РЛС, сканирование диаграммы направленности или переключение процесса слежения с одного объекта на другой и т.д.). В этом случае на вход дискриминатора поступает периодический импульсный сигнал (рис.1).

Рис.1. Импульсный сигнал на входе дискриминатора.

Функциональные схемы следящих систем при наличии прерываний входного сигнала приведены на рис.2, 3. Схема (рис.2) отличается от обобщенной функциональной схемы радиоэлектронной следящей системы наличием ключа Кл, размыкаемого во время пауз. На рис.3 представлена схема с фиксатором, который препятствует пропаданию напряжения на входе фильтра в промежутке между импульсами.

Рис.2. Функциональная схема следящей системы с прерывистым входным сигналом: Дис – дискриминатор; ОГ – опорный генератор.

Фиксатор (экстраполятор нулевого порядка) состоит из сумматора , линии задержки на время и интегратора Инт. В фиксаторе во время действия импульса полезного сигнала на входе интегратор заряжается до некоторого уровня, который сохраняется до прихода очередного импульса. Перед приходом очередного импульса интегратор разряжается задержанным на время отрицательным импульсом, поступающим через линию задержки.

Рис.3. Функциональная схема следящей системы с фиксатором.

Временные диаграммы, поясняющие принцип работы фиксатора, приведены на рис.4.

Рис.4. Временные диаграммы, поясняющие принцип работы фиксатора.

Использование фиксатора позволяет обеспечить необходимый коэффициент усиления контура.

Передаточная функция фиксатора:

(1)

Если ,

, (2)

где ─ коэффициент передачи интегратора (величина обратная постоянной времени).

Структурные схемы систем

Структурная схема системы с прерывистым входным сигналом без фиксатора отличается от схемы системы с непрерывным входным сигналом наличием ключа перед звеном с передаточной функцией Wф(р) (рис.5). При использовании фиксатора схема дополняется звеном с передаточной функцией, определяемой выражениями (1) или (2).

Рис.5. Структурная схема системы с прерывистым входным сигналом:

─ крутизна дискриминационной характеристики; ─ флюктуационная составляющая

Коэффициент передачи ключа (рис.9.6)

Рис.6. Коэффициент передачи ключа.

Наличие ключа делает процесс регулирования прерывистым, а системы – системами с переменными во времени параметрами.

Анализ таких систем определяется соотношениями между длительностью импульса, полосой пропускания следящей системы и частотой повторения импульсов.

Если частота повторения импульсов много больше полосы системы, то анализ может быть осуществлен методами анализа непрерывных систем.

Если же это условие не выполняется и за время происходит значительное изменение ошибки слежения, то такие системы называют системами с конечным временем съема данных, или импульсными системами. Анализ их осуществляется отдельно в момент отсутствия и наличия сигнала на входе, затем решения сшиваются.

Если же за время ошибка меняется незначительно, анализ системы можно существенно упростить, представив систему прерывистого регулирования как дискретную. Дискретными называют системы, в которых сигналы подвергаются дискретизации по времени.

Рассмотрим методику перехода к дискретной системе на примере системы прерывистого регулирования без фиксатора.

Чтобы получить структурную схему дискретной системы, вместо ключа вводят импульсный элемент (рис.7), коэффициент передачи которого является последовательностью дельта-функций

.

Рис.7. Изображение импульсного элемента на структурной схеме

Импульсный элемент преобразует непрерывную функцию в последовательность модулированных по площади дельта-функций:

, (3)

где ─ модулированная по площади дельта-функция (рис.8);

─ дискретная функция (рис.9).

Рис.8. Модулированная.

Рис.9. Дискретная функция, последовательность дельта-функций.

Дискретная функция в тактовых точках равна исходной непрерывной, а в промежутках между тактовыми точками равна нулю (см. рис.9).

Импульсный элемент преобразует непрерывную функцию в дискретную и модулирует ее по площади.

Импульсы напряжения на выходе ключа имеют конечную длительность, и коэффициент передачи его равен единице в замкнутом состоянии, а на выходе импульсного элемента формируется последовательность дельта-функций.

Чтобы обеспечить подобие процессов на выходе ключа и выходе заменяющего его импульсного элемента, необходимо последовательно с импульсным элементом включить формирующий фильтр.

Импульсная характеристика формирующего фильтра ─ реакция системы на последовательность дельта-функций. Она должна быть равна коэффициенту передачи ключа:

.

Передаточная функция формирующего фильтра является преобразованием Лапласа от импульсной характеристики:

.

Процесс ее формирования можно представить как преобразование Лапласа разности двух ступенчатых функций (разность изображений по Лапласу единичной ступенчатой функции и этой же функции, задержанной на длительность импульса).

Условием эквивалентности ключа и импульсного элемента с формирователем является незначительное изменение ошибки в моменты действия импульса.

С учетом проведенных преобразований структурная схема может быть представлена в виде рис.10.

Рис.10. Структурная схема дискретной системы.

называется передаточной функцией приведенной непрерывной части системы:

;

при наличии фиксатора передаточная функция звена

.

Если , то можно приближенно записать в виде

;

.

Обычно полагают, что .

Тогда

.

Эквивалентная флюктуационная составляющая отличается от флюктуационной составляющей непрерывной системы. Ее дисперсия равна

.

Таким образом, в дискретной системе закон изменения параметров определяется только периодом повторения импульсов.

Математическое описание дискретных систем

Z-преобразование и его свойства

Для описания и анализа дискретных систем используется соответствующий математический аппарат: интегрирование заменяется суммированием, дифференцирование – конечной разностью, вместо дифференциальных уравнений используются разностные уравнения. Наряду с разностными уравнениями при анализе систем используются также дискретные преобразования Фурье и Лапласа, z-преобразование и другие.

Дискретное преобразование Лапласа:

,

где ─ изображение; ─ оригинал.

Для анализа систем преобразование Лапласа неудобно, так как изображение является трансцендентной функцией переменной. Поэтому путем замены переменной

переходят к z-преобразованию:

.

Основные свойства z-преобразования определяются рядом теорем:

- теорема обращения, позволяющая по изображению определить оригинал: ;

- z-изображение суммы или разности дискретных процессов:

;

- z-изображение произведения постоянной величины и дискретного процесса:

;

- теорема о конечном значении оригинала:

;

- теорема о начальном значении оригинала:

;

- теорема свертки оригиналов:

;

- теорема запаздывания: при ненулевых начальных условиях ─

; ;

при нулевых начальных условиях ─

;

- z - преобразование непрерывной функции времени:

,

где ─ непрерывная величина.

Z-преобразование изображения по Лапласу непрерывного процесса по определению совпадает с z-преобразованием процесса :

;

,

где ─ непрерывная величина.

Таким образом,

.

ЛИТЕРАТУРА

1. Коновалов. Г.Ф. Радиоавтоматика: Учебник для вузов. – М.: Высш. шк., 2000.

2. Радиоавтоматика: Учеб. пособие для вузов. / Под ред. В.А. Бесекерского. - М.: Высш. шк., 2005.

3. . Первачев С.В. Радиоавтоматика: Учебник для вузов. - М.: Радио и связь, 2002.

4. Цифровые системы фазовой синхронизации / Под ред. М.И. Жодзишского – М.: Радио, 2000.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений08:24:04 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
22:42:49 28 ноября 2015

Работы, похожие на Реферат: Системы с прерывистым входным сигналом. Математическое описание дискретных систем

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151226)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru