Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Курсовая работа: Дослідження методів чисельного інтегрування

Название: Дослідження методів чисельного інтегрування
Раздел: Рефераты по информатике, программированию
Тип: курсовая работа Добавлен 01:44:44 08 декабря 2009 Похожие работы
Просмотров: 813 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Міністерство освіти і науки України

Вінницький національний технічний університет

Інститут автоматики, електроніки та комп’ютерних

систем управління

Факультет АКСУ
Кафедра АІВТ

Курсова робота

з дисципліни

«Обчислювальні методи та застосування ЕОМ»

Дослідження методів чисельного інтегрування

2006

Анотація

В даній курсовій роботі розроблена програма для обчислення визначеного інтегралу методом Чебишева третього четвертого та п’ятого порядків.

Програма дозволяє отримати розв’язання інтегралу зазначеним методом, оцінити похибки та порівнювати їх з точним обчисленнями отриманими в математичному пакеті Mathcad 2001 Professional.


1. Теоретичні відомості

У курсовій роботі проведено дослідження методів чисельного інтегрування. Адже, у задачах, пов'язаних з аналізом, ідентифікацією, оцінкою якості, моделюванням різноманітних пристроїв автоматики, керування, інформаційно-вимірювальної техніки, радіоелектроніки, виникає необхідність обчислення визначених інтегралів.

В основу чисельного інтегрування покладено наближене обчислення площини під кривою, яка описується підінтегральною функцією інтеграла:

Загальний підхід до розв’язування цієї задачі такий: визначений інтеграл I являє собою площину, обмежену кривою f(х), віссю Х та прямими Х = a, Х =b, відрізок від a до b розбивають на множину менших відрізків, знаходять наближено площу кожної площини Si, яку отримують за таким розбиванням, значення інтеграла І знаходять як суму площ площин Sі, тобто I = Si. При цьому використовують два способи розбивання початкового відрізка на менші

1.Розбивання відрізка проводиться раніше, до того ж завжди відрізок вибирають рівним (метод прямокутників, трапецій, Сімпсона).

2.Місцезнаходження та довжина відрізків визначаються аналізом, до того ж спочатку ставиться за мету досягти найбільшої точності з заданим числом відрізків, а потім відповідно з цим визначають їхні межі (методи Гаусса, Ньютона - Котеса, Чебишева) [1].

1.1 Метод прямокутників

Найпростішим методом наближеного обчислення інтеграла є метод прямокутників, геометрична інтерпретація якого зводиться до знаходження визначеного інтеграла як суми площ N прямокутників (з висотою f(x) та основою h=xi =xi+1 -xi ), отриманих розділень відрізка[a,b] на N рівних частин, до того ж якщо розділити на прямокутники зліва на право, то отримаємо формулу лівих прямокутників:

In =f(x)dx»Si =h[f(x0 )+f(x1 )+...+f(xn-1 )]=f(xi );(1.1)

якщо ж розділити на N прямокутників справа на ліво, то отримаємо формулу правих прямокутників:

Iпр =f(x)dx»h[f(xn )+...+f(x1 )]=f(xi )(1.2)

1.2 Метод трапецій

Суть методу трапеції, полягає в тому, що інтеграл обчислюється по-іншому, відрізок інтегрування поділяється на N рівних відрізків, всередині яких підінтегральна крива f(x) замінюється кусково- лінійною функцією j(x), отриманою стягуванням ординат N відрізків хордами.

Обчислення визначеного інтеграла зводиться до знаходження сум площ Si прямокутних трапецій N.

Площа кожної такої трапеції визначається як:

Si =h(f(xi )+f(xi+1 )).(1.3)


Отже, формула трапеції:

I=»Si =h(f(x0 )+f(x1 )+f(x2 )+...+f(xn-1 )+f(xN )= =[(f(x0 )+f(xn ))+f(xi )].(1.4)

Графічна модель

Похибка обчислення інтеграла за формулою трапецій оцінюється як

(1.5)

Де М2 –максимальне значення другої похідної. f(x) при ,h- крок обчислень.

1.3 Метод Сімпсона (метод парабол або метод криволінійних трапецій)

Цей метод також використано у курсовій роботі, близький до методу трапецій у тій частині, що інтегрування проводиться шляхом поділу відрізка інтегрування [а, b] на множину відрізків (N пар відрізків). Однак, з метою збільшення точності наближеного інтегрування на кожному відрізку [Xi, Xi+2] підінтегральної функції f(x) замінюють квадратичною параболою j(x), обчислення визначеного інтеграла зводиться до обчислення суми N криволінійних трапецій Si: I= f(x)dx»Si [1].


Графічна модель.

Площа кожної такої трапеції визначається за формулою Сімпсона:

Si= [f(xi)+4f(xi+1)+f(xi+2)], (1.6), тобто

(y0 +4y1 +y2 ),

(y2 +4y3 +y4 ),

(y4 +4y5 +y6 ), (1.7)

. . . . . . . . . . . . . . . . . . . . . . .

(y2n-2 +4y2n-1 +y2n ),

Тоді чисельне значення визначеного інтеграла на відрізку [a,b] дорівнюватиме сумі інтегралів, тобто


[y0 +y2n +4(y1 +...+y2n-1 )+2(y2 +...+y2n-2 )],

або

[y0 +y2n +4y2i-1 +2y2i ],(1.8)

де h =(b-a)/2N.

Похибка обчислення інтеграла за формулою Сімпсона оцінюється як

де М4 –максимальне значення четвертої похідної. f(x) при , h- крок обчислень.

1.4 Метод Ньютона-Котеса

Цей метод засновано на апроксимації однієї із сторін криволінійної трапеції, яка отримується поділом відрізка [a,b] на N рівних частин, многочленами вищих порядків, також як у методі трапецій використовується лінійна апроксимація (заміна однієї із сторін трапеції прямою лінією), а в методі Сімпсона - апроксимація параболою.

Основна формула методу:

yi Hi, (1.9)

де Hi - коефіцієнти Ньютона - Котеса. Ці коефіцієнти не залежать від вигляду f(x), а є функцією тільки N (кількість вузлів інтерполяцїї). Таким чином, коефіцієнти Ньютона - Котеса можна обчислити раніше для різного числа вузлів інтерполяції .

Легко можна показати, що методи трапецій та Сімпсона є частинними випадками методу Ньютона - Котеса.

1.5 Метод Чебишева

Метод Чебишева використано в курсовій грунтується на обчисленні інтеграла за значеннями функції yi =f(xi),(i=1,2,...,N) у зафіксованих вузлах інтерполяції x1,x2,...,xN (де h=const). Коефіцієнти Ньютона -Котеса Нi (i=1,N) не залежать від значень функції у вузлах інтерполяції. П.Л.Чебишев запропонував для обчислення визначених інтегралів використати формулу:

ci f(xi ), (1.10)

в якій квадратурні коефіцієнти сi (i = 1,2, ...,N) зафіксовані, а абсциси xi (i=1,2,...,N)підлягаютьвизначенню.

Таблиця 1.1.

Коефіцієнти Ньютона - Котеса

n = 1 Но = H1 = ½
n = 2 Но = Н2 = 1/6, Н1 = 2/3
n = 3 Н0 = Н3 = 1/8, Н1 = H2 = 3/8
n = 4 Но = Н4 = 7/90, Н1 = Нз = 16/45, Н2 = 2/15
n = 5

Н0 = Н5 =19/288, Н1 = Н4 = 25/96, Н2 = Нз =

= 25/144

n = 6 Но = Н6 = 41/840, Н1 = Н5 = 9/35, Н2 = Н4 = =9/280, Нз = 34/105
n = 7 Но = Н7 = 75І/17280, Н1 = Н6 = 3577/1728О, Н2 = Н5 =1323/1728О, Нз = Н4 = 2989/17280

Для простоти обчислень необхідно вибрати С1=...=Сn. Розглядаємо спочатку частинний випадок, коли межі інтегрування дорівнюють -1 та 1. Тоді формула Чебишева набере вигляду:

2Cn[f(x1 )+f(x2 )+...+f(xn )],(1.11)

де квадратурні коефіцієнти Сn та абсциси xi підлягають визначенню.

Коефіцієнти та вузли інтерполяції xi визначимо із умови, що ця рівність є точною для випадку, коли f(х) многочлен вигляду:

f(x)=a0 +a1 x+a2 x2 +...+an xn .(1.12)

Підставимо многочлен у ліву частину попередньої формули та про- інтегруємо:

(a0 +a1 x+a2 x2 +...+an xn )=2(a0 +a2 +a3 +...).(1.13)

У праву частину рівності (1. 11) підставимо значення многочлена (1.І2) у вузлах x1,x2,...,xn:

f(x1 )=a0 +a1 x1 +a2 x1 2 +a3 x1 3 +...+an x1 n ,

f(x2 )=a0 +a1 x2 +a2 x2 2 +a3 x2 3 +...+an x2 n ,

f(x3 )=a0 +a1 x3 +a2 x3 2 +a3 x3 3 +...+an x3 n ,(1.14)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f(xn )=a0 +a1 xn +a2 xn 2 +a3 xn 3 +...+an xn n ,


Тоді рівність (1.ІЗ) набере вигляду:

2(a0 +a2 +a4 +...)=2cn [na0 +a1 (x1 +x2 +...+xn )+a2 (x1 2 +x2 2 +...+xn 2 )+

+a3 (x1 3 +x2 3 +...+xn 3 )+...+an (x1 n +x2 n +...+xn n )].(1.15)

Отримана рівність повинна виконуватися за будь-яких значень a0 ,a1 ,...,an ; таким чином, порівнюючи коефіцієнти аi в правій та лівій частинах (1.І5) знаходимо, що nсn = 1, звідки

Cn =.(1.16)

і, крім цього,

x1 +x2 +x3 +...+xn =0,

x1 2 +x2 2 +x3 2 +...+xn 2 =,

x1 3 +x2 3 +x3 3 +...+xn 3 =0,(1.17)

x1 4 +x2 4 +x3 4 +...+xn 4 =,

. . . . . . . . . . . . . . . . . . .

x1 n +x2 n +x3 n +...+xn n =[1-(-1)n+1 ],

Підставляючи знайдене для Сn виразу в співвідношені 1.13 отримаємо формулу Чебишева:

[f(x1 )+f(x2 )+...+f(xn )],(1.18)


де точки x1,...,хn визначаються із системи рівнянь (1.17).

Значення x1,...,хn для різних n обчислюються раніше та зводять в табл. 1.2.

Коли межі даного інтеграла відрізняються від -1 та 1, формула Чебишева матиме вигляд:

[f(z1 )+f(z2 )+...+f(zn )],(1.19)

де

Таблиця 1.2.

Число

ординат

Значення абсцис

n = 2

n = 3

n = 4

n = 5

n = 6

n = 7

-x1 = x2 = 0.577350

-x1 = x3 = 0.707107; x2 = 0

-x1 = x4 = 0.794654; -x2 = x3 = 0.187592

-x1 = x5 = 0.832498; -x2 = x4 = 0.374541; х3 = 0

-x1 = x6 = 0.866247; -x2 = x5 = 0.4225І9; -x3 = x4 = 0.266635

-x1 = x7 = 0.883862; -x2 = x6 = 0.529657; -x3= = x5 = 0.323912; x4 = 0

Zi =+xi , (i=1,2,...,n),(1.20)

а xi мають вкaзані в таблиці значення.

Похибка обчислень за методом Чебишева знаходиться за формулою:

2. Розробка та опис логічної частини програми

Програма складається з двох блоків. Це – інтерфейний модуль, що забезпечує користувача змогою спілкуватися з комп’ютером за допомогою клавіатури, та сама програма, що здійснює всі обчислювальні операції.

При запуску спершу ініціюється графіка та створюється меню і ініціюються змінні. Потім іде блок зчитування з клавіатури. Він аналізує введену користувачем інформацію і згідно з нею виконує певні дії. При натисканні на клавіші управління курсором відбувається переміщення по меню. При натисканні на клавішу Enter відбувається аналіз кнопки, яка була обрана на даний момент, і згідно з цим виконання певних дій. Це можуть бути такі операції:

1) обчислення інтегралу методом Чебишева 3-го порядку: виконується алгоритм, який детально пояснено в додатку Б.

2) обчислення інтегралу методом Чебишева 4-го порядку.

3) обчислення інтегралу методом Чебишева 5-го порядку

4) Задається крок обчислення h=0.1;

5) Задається крок обчислення h=0.2;

6) Задається крок обчислення h=0.5;

7) Про автора – довідка про автора програми;

8) Вихід з програми – здійснюється вихід з програмного середовища ТР;

Робота даної програми починається з підключення стандартного модуля введення-виведення crt та модуля graph для ініціалізації графіки, оскільки програма виконана в графічному режимі. Далі задаються константи інтегрування.

Тип TMenuItems – масив пунктів меню. Далі задаємо підінтегральну функцію. Процедура InitGraphMode – процедура для ініціалізації графіки, VGA - тип графічного драйверу, VGAHi – тип графічного режиму.

· DrawCursor(x,y:integer) – процедура для малювання курсору;

· HideCursor(x,y:integer) – процедура, що автоматично забирає курсор з екрану;

· Function WaitWhileKeypressed(var FKey:boolean):char – функція, що очікує нажатої клавіші, цикл повторюється до тих пір, доки не буде зчитано код нажатої клавіші;

· Procedure menu(x,y:integer;…var poin:integer) – дана процедура власне виводить на екран графічне меню та надає змогу користувачеві здійснити вибір пункту меню за допомогою графічного курсору.

3. Функціональне призначення програми

Програма призначена для обчислення визначеного інтегралу I=, методом Чебишева третього, четвертого та п’ятого порядків, також дає змогу зменшити похибку обчислень за рахунок зменшення кроку інтегрування.

Програма має гарний інтерфейс користувача з меню, що керується з клавіатури. Результати обчислень виводяться на екран монітора.

Дана програма пристосована для вирішення тільки одного інтегралу, а тому є вузько спеціалізованою, проте можлива зміна підінтегральної функції шляхом корегування програмного коду.

Комп'ютер може швидко опрацьовувати дані і виводити результати на екран.

4. Вхідні та вихідні дані

Вхідні дані:

1. Інтеграл: I= ;

2. Крок обчислень 0.1,0.2,0.5;

3. Порядок інтегрування: третього , четвертого та п’ятого порядку.

Вихідні дані:

1. Значення інтегралу, що знаходить программа.

2. Загальна похибка по заданим методам.

3. Порівняння результатів з точним значенням.


5. Результати розрахунків

Результатами обчислень є знаходження значення визначеного інтеграла I=, , зазначеними методами, з кроком: h=0.1, h=0.2, h=0.5.

При розрахунку інтегралу 3-го порядку програма виведе на екран слідуючі результати:

Інтеграл Чебишева 3-го порядку: 2.649061117170

Загальна похибка: 0.0316342854

Точне розв’язання (Mathcad 2001): 2.68069545714219

Крок: 0.5

Інтеграл Чебишева 3-го порядку: 2,66138784520

Загальна похибка: 0.0193076119

Точне розв’язання (Mathcad 2001): 2.68069545714219

Крок: 0.2

Інтеграл Чебишева 3-го порядку: 2,67298758310

Загальна похибка: 0.00770787

Точне розв’язання (Mathcad 2001): 2.68069545714219

Крок: 0.1

При розрахунку інтегралу 4-го порядку програма виведе на екран слідуючі результати:

Інтеграл Чебишева 4-го порядку: 2.6680680931

Загальна похибка: 0.01262744

Точне розв’язання (Mathcad 2001): 2.68069545714219

Крок: 0.5

Інтеграл Чебишева 4-го порядку: 2,6743859370

Загальна похибка: 0.006309519

Точне розв’язання (Mathcad 2001): 2.68069545714219

Крок: 0.2

Інтеграл Чебишева 4-го порядку: 2,676438956720

Загальна похибка: 0,00385156152

Точне розв’язання (Mathcad 2001): 2.68069545714219

Крок: 0.1

При розрахунку інтегралу 5-го порядку програма виведе на екран слідуючі результати:

Інтеграл Чебишева 5-го порядку: 2,68069554160

Загальна похибка: 0.00000008443

Точне розв’язання (Mathcad 2001): 2.68069545714219

Крок: 0.5

Інтеграл Чебишева 5-го порядку: 2.68069545713707

Загальна похибка: 0.00000000512

Точне розв’язання (Mathcad 2001): 2.68069545714219

Крок: 0.2

Інтеграл Чебишева 5-го порядку: 2.68069545714209

Загальна похибка: 0,00000000010

Точне розв’язання (Mathcad 2001): 2.68069545714219

Крок: 0.1


Висновки

В даній курсовій роботі було проведене дослідження чисельних методів вирішення визначеного інтегралу виду I=, по методу Чебишева.

Алгоритм методу є досить простим. Для його реалізації потрібно мати функцію, межі та крок інтегрування.

В курсовій роботі, для перевірки результатів обчислень, я використовував математичний пакет MatchCad 2001. Похибку для даної функції доцільно було б оцінювати, як абсолютне значення різниці між точним значенням та одержаним в програмі.

Однак, хоча й виникали певні труднощі з виконанням завдання, але це було безперечно цікаво, і багато чому мене навчили.


Література

1. В.Т.Маликов, Р.Н.Кветный. Вычислительные методы и применение ЭВМ. – К.: Вища школа, 1989.– 213 с.

2. В.М. Дубовий, Р.Н.Квєтний Методичні вказівки до лабораторних робіт з програмування та застосування ЕОМ . Навчальне видання. –Вінниця, ВПІ, 1992.

3. В.М. Дубовий, Р.Н.Квєтний. Програмування комп’ютеризованих систем управління та автоматики. - В.: ВДТУ, 1997. – 208с.

4. Р.Н.Кветний Методи комп’ютерних обчислень. Навчальний посібник.- Вінниця: ВДТУ, 2001.-148с.

5. А. І. Марченко, Л. А. Марченко “Программирование в среде Турбо Паскаль 7.0”, Київ “ВЕК+”, 1999 р.


Додаток А

Лістинг

program Kursova;

uses crt,graph;

const

a=0;

b=1;

c=1.5;

d=2;

t3:array[1..3] of real=(-0.707107,0,0.707107);

t4:array[1..4] of real=(-0.794654,-0.187592,0.187592,0.794654);

t5:array[1..5] of real=(-0.832498,-0.374541,0,0.374541,0.832498);

Type TMenuItems=array[1..10] of string;

TDelta=array[1..300] of real;

Var Item:TMenuItems;

ResM:TDelta;

i,n:integer;

h:real;

ki:integer;

M,x,Ic,I2n,nc,sc1,sc2,I1n,x1,x2:real;

s,hs,s1:string;

k:Integer;

sum,int,si:real;

Delta,AllDelta,sum1:real;

Function Fact(n:integer):integer;

begin

if n=0 then Fact:=1

else Fact:=n*Fact(n-1)

end;

{Ф-я}

function f(x1:real):real;

begin

f:=exp(-d*x1*x1+c)

end;

procedure InitGraphMode;

var gd,gm:integer;

begin

gd:=VGA;

gm:=VGAHi;

initgraph(gd,gm,'');

end;

procedure DrawCursor(x,y:integer);

var i,j:integer;

begin

setcolor(white);

setlinestyle(0,0,1);

MoveTo(x,y+3);LineTo(x+10+5,y);LineTo(x+5,y-10);LineTo(x+10+10+5,y+3);

LineTo(x+5,y+16);LineTo(x+10+5,y+6);LineTo(x,y+3);

setfillstyle(1,red);

end;

{---------------------------------------------------------------------------}

Procedure HideCursor(x,y:integer);

begin

setcolor(lightblue); {insert your background color instead of black}

setlinestyle(0,0,1);

MoveTo(x,y+3);LineTo(x+10+5,y);LineTo(x+5,y-10);LineTo(x+10+10+5,y+3);

LineTo(x+5,y+16);LineTo(x+10+5,y+6);LineTo(x,y+3);

setfillstyle(1,red);

end;

Function WaitWhileKeypressed(var FKey:boolean):char;

var result:char;

begin

FKey:=false;

while keypressed do result:=readkey; {It clears keyboard buffer}

repeat until keypressed;

result:=readkey;

if result=#0 then

begin

result:=readkey;

FKey:=true;

end;

WaitWhileKeypressed:=result;

end;

Procedure Menu(x,y:integer;Items:TMenuItems;n:integer;var point:integer);

var i:integer;

ch:char;

FKey:boolean;

begin

setbkcolor(lightblue);

setcolor(yellow);

Rectangle(10,10,625,465);

setcolor(lightgreen);

Rectangle(14,14,621,461);

setcolor(lightred);

for i:=1 to n do outtextxy(x+50,y+(i-1)*30,Items[i]);

repeat

for i:=1 to n do

if i<>point then HideCursor(x,y+(i-1)*30)

else DrawCursor(x,y+(i-1)*30);

ch:=WaitWhileKeypressed(FKey);

case ch of

#72: if point>1 then dec(point);

#80: if point<n then inc(point);

#27: point:=-1;

end;

until (ch=#13) or (ch=#27);

for i:=1 to n do HideCursor(x,y+(i-1)*30);

end;

procedure PrintArray(n:integer; m:TDelta);

var s0,s1:string;

begin

setfillstyle(1,lightblue);

bar(360,40,620,450);

for i:=1 to n do

begin

str(i,s0);

str(m[i]:5:10,s1);

if (i mod 25 =0) then

begin

readln;

bar(360,40,620,450);

end;

outtextxy(430,(i mod 25)*15+40,s0+' '+s1);

end;

end;

{-----------------------------------------------------------------------}

begin

InitGraphMode;

setcolor(blue);

h:=0.1;

repeat

cleardevice;

Item[1]:='Метод Чебишева 3-го порядку';

Item[2]:='Метод Чебишева 4-го порядку';

Item[3]:='Метод Чебишева 5-го порядку';

Item[4]:='Крок обчислень=0.1';

Item[5]:='Крок обчислень=0.2';

Item[6]:='Крок обчислень=0.5';

Item[7]:='Про автора';

Item[8]:='Вихид';

i:=1;

setcolor(white);

Menu(50,30,Item,7,i);

case i of

1:begin

setbkcolor(lightblue);x:=a; sum:=0; i:=0;

while x<=b do begin

inc(i);

x:=x+h;

si:=0;

for k:=1 to 3 do si:=si+f(x-h/2+h/2*t3[k]);

si:=h/3*si;

sum:=sum+si;

sum1:=(x-((a+b)/2))*(x-((a+b)/2))*(x-((a+b)/2))*(x-((a+b)/2))*

48*exp(-2*x*x+1.5)-384*x*x*exp(-2*x*x+1.5)+256*x*x*x*x*exp(-2*x*x+1.5);

n:=i+10;

end;

delta:=((b-a)/(n*fact(3)))*sum1;

delta:=Abs(delta);

AllDelta:=abs(delta);

str(Delta:12:10,s1);

Resm[i]:=Delta;

setcolor(red);

str(Sum:12:18,s);

str(AllDelta:12:20,s1);

str(h:2:3,hs);

setcolor(blue);

Outtextxy(100,240,'Интеграл: '+s);

Outtextxy(45,260,'Точне значення (Mathcad): 2.68069545714219');

Outtextxy(100,280,'Похибка: '+s1);

Outtextxy(100,300,'Крок: '+hs);

readln;

end;

2: begin

setbkcolor(lightblue);x:=a; sum:=0; i:=0;

while x<=b do begin

inc(i);

x:=x+h;

si:=0;

for k:=1 to 4 do si:=si+f(x-h/2+h/2*t4[k]);

si:=h/4*si;

sum:=sum+si;

sum1:=(x-((a+b)/2))*(x-((a+b)/2))*(x-((a+b)/2))*(x-((a+b)/2))*(x-((a+b)/2))*

(-960*x*exp(-2*x*x+1.5)+2560*x*x*x*exp(-2*x*x+1.5)-1024*x*x*x*x*x*exp(-2*x*x+1.5));

n:=i+10;

end;

delta:=((b-a)/(n*fact(3)))*sum1;

delta:=Abs(delta);

AllDelta:=abs(delta);

str(Delta:12:10,s1);

Resm[i]:=Delta;

setcolor(red);

str(Sum:12:18,s);

str(AllDelta:12:20,s1);

str(h:2:3,hs);

setcolor(blue);

Outtextxy(100,240,'Интеграл: '+s);

Outtextxy(45,260,'Точне значення (Mathcad): 2.68069545714219');

Outtextxy(100,280,'Похибка: '+s1);

Outtextxy(100,300,'Крок: '+hs);

readln;

end;

3:begin

setbkcolor(lightblue);x:=a; sum:=0; i:=0;

while x<=b do begin

inc(i);

x:=x+h;

si:=0;

for k:=1 to 5 do si:=si+f(x-h/2+h/2*t5[k]);

si:=h/5*si;

sum:=sum+si;

sum1:=(x-((a+b)/2))*(x-((a+b)/2))*(x-((a+b)/2))*(x-((a+b)/2))*(x-((a+b)/2))*

(x-((a+b)/2))*(-960*exp(-2*x*x+1.5)+11520*x*x*exp(-2*x*x+1.5)

-15360*x*x*x*x*exp(-2*x*x+1.5)+4096*x*x*x*x*x*x*exp(-2*x*x+1.5));

n:=i+10;

end;

delta:=((b-a)/(n*fact(3)))*sum1;

delta:=Abs(delta);

AllDelta:=abs(delta);

str(Delta:12:10,s1);

Resm[i]:=Delta;


setcolor(red);

str(Sum:12:18,s);

str(AllDelta:12:20,s1);

str(h:2:3,hs);

setcolor(blue);

Outtextxy(100,240,'Интеграл: '+s);

Outtextxy(45,260,'Точне значення (Mathcad): 2.68069545714219');

Outtextxy(100,280,'Похибка: '+s1);

Outtextxy(100,300,'Крок: '+hs);

readln;

end;

4: begin

sound(500);

setbkcolor(lightred);

h:=0.01;

Outtextxy(150,200,'Крок h=0.01 ');

Outtextxy(170,250,'Натиснить будь-яку клавишу ...');

delay(10000);

nosound;

repeat until keypressed;

end;

5: begin

setbkcolor(lightred);

h:=0.02;

Outtextxy(150,200,'Крок h=0.02 ');

Outtextxy(170,250,'Натиснить будь-яку клавишу ...');

repeat until keypressed;

end;

6: begin

setbkcolor(lightred);

h:=0.05;

Outtextxy(150,200,'Крок h=0.05 ');

Outtextxy(170,250,'Натиснить будь-яку клавишу ...');

repeat until keypressed;

end;

7: begin

setbkcolor(lightred);

Outtextxy(160,200,'Програму виконав ст.гр. 3АВ-02');

Outtextxy(210,220,'Нетяга О.В.');

repeat until keypressed;

end;

8: exit;

end;

until (i=7) or (i=-1);

CloseGraph;

end.

Додаток Б

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений06:46:47 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
19:52:36 28 ноября 2015

Работы, похожие на Курсовая работа: Дослідження методів чисельного інтегрування

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151077)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru