Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Лабораторная работа: ЭВМ с использованием математического пакета MathCad в среде Windows 98 для решения системы алгебраических уравнений

Название: ЭВМ с использованием математического пакета MathCad в среде Windows 98 для решения системы алгебраических уравнений
Раздел: Рефераты по информатике, программированию
Тип: лабораторная работа Добавлен 05:30:20 06 декабря 2009 Похожие работы
Просмотров: 119 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Министерство Топлива и Энергетики Украины

СЕВАСТОПОЛЬСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ

ЯДЕРНОЙ ЭНЕРГИИ И ПРОМЫШЛЕННОСТИ

Тема :

ЭВМ с использованием математического пакета MathCad в среде Windows 98 для решения системы алгебраических уравнений

Севастополь 2008


План

1. Данные варианта задания

2. Операции численного решения системы линейных алгебраических уравнений

2.1 Решение системы линейных алгебраических уравнений методом последовательного исключения неизвестных (метод Гаусса)

2.2 Решение системы линейных алгебраических уравнений методом последовательного исключения неизвестных (метод Холесского)

2.3 Решение системы линейных алгебраических уравнений методом определителей

2.4 Решение системы линейных алгебраических уравнений методом обратной матрицы

2.5 Решение однородной системы линейных алгебраических уравнений

Выводы по работе №2


1. Данные варианта задания

Коэффициенты квадратной матрицы А и вектора b

Таблица1. Коэффициенты квадратной матрицы А и вектора b.

вар

Коэффициенты квадратной матрицы А и вектора b системы линейных алгебраических уравнений
а11 а12 а13 а14 а21 а22 а23 а24 а31 а32 а33 а34 а41 а42 а43 а44 b1 b2 b3 b4
8 2,4 1,4 1,6 1,8 2,6 12 0,6 4,0 -0,8 0,85 0,1 0,2 0,4 1,2 1,0 1,5 0,1 0,2 -0,4 0,6

2. О перации численного решения системы линейных алгебраических уравнений

2.1 Решение системы линейных алгебраических уравнений методом последовательного исключения неизвестных (метод Гаусса)

a11·x1+ a12·x2+ a13·x3+ a14·x4=b1

a21·x1+ a22·x2+ a23·x3+ a24·x4=b2 (1)

a31·x1+ a32·x2+ a33·x3+ a34·x4=b3

a41·x1+ a42·x2+ a43·x3+ a44·x4=b4

Составим расширенную матрицу системы (1):

Преобразуем матрицу А, для чего умножим первую строку расширенной матрицы на а2111 и вычтем из второй строки расширенной матрицы, затем первую строку умножим на а3111 и вычтем из третьей строки расширенной матрицы, далее первую строку на а41/а11 и вычтем из четвёртой строки, что с помощью Mathcad будет выглядеть так:


Получили новые коэффициенты матрицы А:

Далее аналогично умножаем и вычитаем из второй строки:


Получили новые коэффициенты матрицы А, где число нулевых членов увеличилось.


Далее аналогично умножаем и вычитаем из третьей строки.

Проверим правильность нахождения корней:

Ответ: х1≈0,1 х2≈-0,67 х3≈-2,1 х4≈2,31


2.2 Решение системы линейных алгебраических уравнений методом последовательного исключения неизвестных (метод Холесского)

Метод Холесского заключается в представлении матрицы в виде произведения двух треугольных матриц L и U , имеющих следующий вид: диагональные элементы L матрицы равны единице, а элементы выше главной диагонали равны нулю; у матрицы U равны нулю элементы, лежащие ниже главной диагонали. Тогда можно записать:

,

что эквивалентно двум треугольным системам,

которые можно решить способом изложенным выше. Элементы lij , и uij матриц L и U можно найти, образуя произведение матриц LU и приравнивая его элементы последовательно элементам а11 , а11 ……. аnn матрицы А.

Последовательно приравниваем элементы полученной матрицы к элементам а11 , а11 ……. аnn матрицы А и находим элементы lij , и uij .

По первой строке:

По второй строке:

По третьей строке:


По четвёртой строке:

Далее вычисляем значения ξ:



2.3 Решение системы линейных алгебраических уравнений методом определителей

Система уравнений с неизвестными, определитель которой не равен нулю, всегда имеет единственное решение. Это решение определяется так: значение каждого из неизвестных равно дроби, знаменателем которой является определитель системы, а числитель получается из определителя системы заменой столбца коэффициентов при искомом неизвестном столбцом свободных членов.



Ответ: х1≈0,1 х2≈-0,67 х3≈-2,1 х4≈2,31

2.4 Решение системы линейных алгебраических уравнений методом обратной матрицы

Если требуется решить систему для фиксированных значений aij , но для различных значений вектора В, то выгодно построить обратную матрицу А-1 и затем воспользоваться соотношением

Ответ: х1≈0,1 х2≈-0,67 х3≈-2,1 х4≈2,31

2.5 Решение однородной системы линейных алгебраических уравнений

Однородной системой линейных алгебраических уравнений называют такую систему, свободные члены которой равны нулю, т.е.:

a11·x1+ a12·x2+ a13·x3+ a14·x4=0

a21·x1+ a22·x2+ a23·x3+ a24·x4=0

a31·x1+ a32·x2+ a33·x3+ a34·x4=0

a41·x1+ a42·x2+ a43·x3+ a44·x4=0

Однородная линейная система допускает нулевое решение х1=0, х2=0, х3=0, х4=0 и, следовательно, всегда совместна. Интересно выяснить случаи, когда однородная система имеет ненулевые решения. Это будет, если определитель равен нулю.

Найдем значение коэффициента а, при котором определитель равен нулю:


Решение системы будем искать, исключив из нее первое уравнение. Убедимся, что для новой системы уравнений определитель матрицы А не равен нулю:

a21·x1+ a22·x2+ a23·x3 =- a24·x4

a31·x1+ a32·x2+ a33·x3=- a34·x4

a41·x1+ a42·x2+ a43·x3=-a44·x4

Решение системы линейных алгебраических уравнений выполним методом последовательного исключения неизвестных (метод Гаусса). Увеличим для более точных расчётов число знаков после запятой:

В результате будем иметь систему, решение которой определит неизвестные для произвольного значения х4 :


Выводы по работе №2

В результате выполнения практического занятия №2 были изучены некоторые возможности математического пакета MathCadв среде Windows 98 для использования матричной алгебры и решения системы линейных алгебраических уравнений, а также изучены методы решения систем линейных алгебраических уравнений. В процессе работы я научился:

1. Задавать шаблоны матриц и векторов.

2. Работать с массивами, векторами и матрицами.

3. Решать системы линейных алгебраических уравнений различными методами.

Интересно признать, что решение систем уравнений в курсе высшей математики занимало большое количество времени. Например, решение системы методом последовательного исключения неизвестных (метод Гаусса) довольно громоздкий для ручного расчёта и намного быстрее производится с помощьюMathCad , причём с точностью до 18 знаков после запятой. Наиболее наглядным является метод определителей, а самым простым и быстрым - метод обратной матрицы. Результаты расчётов, полученные разными методами, совпадают.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений06:45:57 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
19:51:51 28 ноября 2015

Работы, похожие на Лабораторная работа: ЭВМ с использованием математического пакета MathCad в среде Windows 98 для решения системы алгебраических уравнений

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150405)
Комментарии (1831)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru