Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Курсовая работа: Розрахунок інтегралів за допомогою методів Гауса та Чебишева

Название: Розрахунок інтегралів за допомогою методів Гауса та Чебишева
Раздел: Рефераты по информатике, программированию
Тип: курсовая работа Добавлен 06:06:36 03 декабря 2009 Похожие работы
Просмотров: 51 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Міністерство освіти і науки України

Вінницький державний технічний університет

Інститут ІНАЕКСУ

Факультет АКСУ
Кафедра АІВТ

Курсова робота з дисципліни :

«Обчислювальні методи та застосування ЕОМ»

Керівник професор, д.т.н._______________ Квєтний Р.Н.

Студент гр. 3АВ-0_______________ Кучерявий В.Р.

2003


Зміст

Завдання

1.Загальні відомості

2.Вибір методу інструментальних засобів вирішення задач

3.Функціональне призначення програми

4.Розробка та опис логічної частини програми
5.Керівництво оператору
6.Результати обчислень
Висновки
Література

Додаток А

Блок-схема алгоритму

Додаток Б

Лістинг програми


Анотація

В даній курсовій роботі проведено дослідження різницевого методу для розв’язання крайової задачі. Дослідження проводиться на прикладі заданого диференційного рівняння. Дається опис методу та задачі в цілому.


1. Загальні відомості

Формула Чебишева

Формула обчислення може бути приведена до вигляду

(1)

заміною змінних

При виведенні формули Чебишева використовуються такі умови:

• коефіцієнти АІ рівні між собою;

• квадратурна формула (1) точна для всіх поліномів до степеня п включно.

При цих умовах формула (1) має вигляд:

(2)

Для знаходженнявикористовуємо другу умову, згідно з якою формула (2) повинна бути точною для функції вигляду

Після підстановки цих функцій в (2) отримаємо систему рівнянь

Система рівнянь має розв'язок при п <8 та п=9. В цій обмеженій точності і полягає недолік формули Чебишева. Значеннядля різних п наведені в довідниках.

Для довільного інтервалу (а, b ) формула (2) приймає вигляд

Де

Похибка обчислень за методом Чебишева:

Формула Гаусса

Формула Гаусса називається формулою найвищої алгебраїчної точності. Для формули розрахунку найвища точність може бути досягнута для поліномів степеня (2п - 1), які визначаються 2n постійними і (і =1,2,...,n).

Завдання полягає у визначенні коефіцієнтіві абсцис точок . Для знаходження цих постійних розглянемо виконання формули розрахунку для функцій вигляду

Враховуючи, що

отримаємо систему рівнянь

Ця система нелінійна, і її звичайне розв'язання пов'язане із значними обчислювальними труднощами. Але якщо використовувати систему для поліномів вигляду

де - поліном Лежандра, тоді її можна звести до лінійної відносно коефіцієнтів з заданими точками. Оскільки степені поліномів в співвідношенні не перевищують 2п - 1, повинна виконуватися система (4) і формула (5) приймає вигляд

В результаті властивості ортогональності ліва частина виразу дорівнює 0, тоді

що завжди забезпечується при будь-яких значеннях в точках, які відповідають кореням відповідних поліномів Лежандра.

Підставляючи ці значення в систему і враховуючи перші n. рівнянь, можна визначити коефіцієнти.

Формула розрахунку, де - нулі полінома Лежандра, а

визначаються із системи, називається формулою Гаусса.

Значеннядля різних п наведені в довідниках.

Для довільного Інтервалу (а, b ) формула для методу Гаусса приймає вигляд

Де


Оцінка похибки формули Гаусса з п вузлами визначається із співвідношення

де- максимальне значення похідної на ділянці

2.Вибір методу інструментальних засобів вирішення задач

Розв’язок даної задачі реалізовано на ЕОМ, причому було складено алгоритм та програму в середовищі Borland Delphi 7. Програма є досить простою та зрозумілою для користувача середнього рівня. Готову програму можна використовувати навіть на мінімальних системних параметрах процесора типу Intel P-100, 8 Мb ОЗУ та операційній системі MS-Windows 95.

3. Функціональне призначення

Розроблена програма дозволяє розрахувати вказаний інтеграл:

,

методами Чебишева та Гауса з кроками 0,1 і 0,05.

Результати виводяться у текстовій формі.

4. Розробка та опис логічної частини програми

В даній курсовій роботі було розроблено програмне забезпечення для розв’язання та дослідження заданого диференційного рівняння. Розвязок ведеться за різницевим алгоритмом. Кодування на мові Паскаль проводилося з застосуванням інтуїтивно-зрозумілих назв змінних та процедур. Також відступи та табуляція дозволяє досить легко збагнути структуру програми.

В інтерфейсі також не допущено зайвих елементів.

5. Керівництво оператору

Для завантаження програми необхідно запустити програмний файл Project1.exe. При цьому зявиться вікно (рис. 1), де можна задати початкові умови, переглянути постановку задачі а також ознайомитися з розв’язком при натисненні кнопки Розвязок.

Рисунок 1. Інтерфейс програми.

6. Результати обчислень

Результати обчислень:

Метод Гауса: 0,9962219100

Похибка: 0,0004163754

Метод Чебишева: 0,9961046200

Похибка: 0,0111120270

Точне розвязання (Mathcad): 1,1367262

Висновки

При виконані даної курсової роботи я навчилась розраховувати інтеграли за допомогою методів Гауса та Чебишева. Було відмічено, що метод Гауса є значно точнішим від Чебишева, за що і отримав назву метода найвищої математичної точності.


Література

1. Самарський А.А. Вступ в чисельні методи. - М.: Наука,

1987. – 286 с.

2.Квєтний Р.Н., Маліков В.Т. Обчислювльні методи та використання ЕОМ. Вища школа, 1989 – 55 с., 104 с.


Додаток A Алгоритм роботи програми



Додаток Б - Лістинг програми

unit Unit1;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, ExtCtrls, Buttons, Math;

type

TForm1 = class(TForm)

GroupBox2: TGroupBox;

BitBtn1: TBitBtn;

BitBtn2: TBitBtn;

BitBtn3: TBitBtn;

Memo1: TMemo;

LabeledEdit1: TLabeledEdit;

procedure BitBtn1Click(Sender: TObject);

procedure BitBtn2Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form1: TForm1;

implementation

uses Unit2;

{$R *.dfm}

procedure TForm1.BitBtn1Click(Sender: TObject);

begin

Form2.ShowModal;

end;

procedure TForm1.BitBtn2Click(Sender: TObject);

const

c = 1.5;

d = 2.0;

n = 3;

tc:array[1..3] of extended = (-0.707107, 0, 0.707107);

tg:array[1..3] of extended = (-0.77459667, 0, 0.77459667);

Ag:array[1..3] of extended = (5/9, 8/9, 5/9);

function f(x:extended):extended;

begin

result := c*x/2+1/cos(d*x);

end;

function f_4(x:extended):extended;

begin

result := power(d,4)*

(24-20*power(cos(d*x),2)+

power(cos(d*x),4))/

power(cos(d*x),5);

end;

function f_6(x:extended):extended;

begin

result := -power(d,6)*

(-720-840*power(cos(d*x),2)-

182*power(cos(d*x),4)+power(cos(d*x),6))/

power(cos(d*x),7);

end;

var

i :integer;

h, x,a,b:Extended;

sumC,sumG,iG,iC,ec,max:Extended;

errC,errG:Extended;

begin

try

h:=StrToFloat(LabeledEdit1.Text);

a := 0.0;

b := 0.785-h;

errC:=0; errG:=0;

x:=a; sumC:=0; sumG:=0;

while x<b do begin

iG:=0; iC:=0; ec:=0; max:=0;

for i:=1 to 3 do begin

iC:=iC+(f((2*x+h)/2+h/2*tC[i]));

iG:=iG+(Ag[i]*f((2*x+h)/2+h/2*tG[i]));

ec:=ec+power((2*x+h)/2+h/2*tC[i]-(2*x+h)/2,n+1)*f_4((2*x+h)/2+h/2*tC[i]);

if f_6((2*x+h)/2+h/2*tG[i])>max then max:=f_6((2*x+h)/2+h/2*tG[i]);

end;

iC:=iC*h/n;

iG:=iG*h/2;

sumC:=sumC+iC;

sumG:=sumG+iG;

max:=power(h,2*n+1)*power(6,4)*max/power(2,2*n+1)/power(120,3)/(2*n+1);

if h/18*ec>errC then errC:=h/18*ec;

if max>errG then errG:=max;

x:=x+h;

end;

a := 0.785+h;

b := 1;

x:=a;

while x<b do begin

iG:=0; iC:=0; ec:=0; max:=0;

for i:=1 to 3 do begin

iC:=iC+(f((2*x+h)/2+h/2*tC[i]));

iG:=iG+(Ag[i]*f((2*x+h)/2+h/2*tG[i]));

ec:=ec+power((2*x+h)/2+h/2*tC[i]-(2*x+h)/2,n+1)*f_4((2*x+h)/2+h/2*tC[i]);

if f_6((2*x+h)/2+h/2*tG[i])>max then max:=f_6((2*x+h)/2+h/2*tG[i]);

end;

iC:=iC*h/n;

iG:=iG*h/2;

sumC:=sumC+iC;

sumG:=sumG+iG;

max:=power(h,2*n+1)*power(6,4)*max/power(2,2*n+1)/power(120,3)/(2*n+1);

if h/18*ec>errC then errC:=h/18*ec;

if max>errG then errG:=max;

x:=x+h;

end;

with Memo1.Lines do begin

clear;

Add('Результати обчислень: ');

Add(' Метод Гауса: '+FloatToStrF(sumG,ffFixed,8,10));

Add(' Похибка: '+FloatToStrF(errG,ffFixed,8,10));

Add(' Метод Чебишева: '+FloatToStrF(sumC,ffFixed,8,10));

Add(' Похибка: '+FloatToStrF(errC,ffFixed,8,10));

Add(' Точне розвязання (Mathcad):

'+FloatToStrF(1.1367262217813367605,ffFixed,8,10));

end;

except

on EConvertError do

Application.MessageBox('Неправильно введен_ дан_', 'Увага');

end;

end;

end.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений06:41:15 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
19:48:29 28 ноября 2015

Работы, похожие на Курсовая работа: Розрахунок інтегралів за допомогою методів Гауса та Чебишева

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150399)
Комментарии (1831)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru