Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Лабораторная работа: Разработка математической модели на основе описанных методов

Название: Разработка математической модели на основе описанных методов
Раздел: Рефераты по информатике, программированию
Тип: лабораторная работа Добавлен 22:17:34 11 февраля 2009 Похожие работы
Просмотров: 47 Комментариев: 3 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Цель работы: Получить навыки описания метода решения математической модели на примере решения задач аналитической геометрии.

Задание: 1) Согласно заданному варианту описать методы решения задачи.

2) На основе описанных методов разработать математическую модель.

Задача: Задано множество точек, найти параметры окружности минимального радиуса, проходящие через три точки множества.

Ход работы

І)Математическая постановка задачи:

1) Найти наименьший радиус окружности по формуле: i : = 1…n

D=, где ;

j : = 1… 2)D1,D2,D3- радиусы окружности;

3) XY, XY, XY, XY- координаты точек множества;

4) D=-формула нахождения расстояния между двумя точками;

5)

-система уравнения или неравенства;

6)

-совокупность уравнения или неравенства;


7) -знак больше

-знак меньше

=-знак равно;

8) A, B, C, E- некоторые точки с определенными координатами

ІІ) Описание методов решения:

Метод 1. Метод заключается в том , что бы найти наименьший радиус окружности с помощью последовательного соединения точек с одной, а затем проделывания этого с каждой из точек множества. Затем, с помощью формулы нахождения расстояния между двумя точками

(D=),необходимо вычислить длины получившихся отрезков. После вычисления отрезки необходимо сравнить между собой. В результате если два отрезка, выходящие из одной точки, равны - это и есть радиусы окружности. Но из условия, поставленные задачей, необходимо найти минимальный радиус окружности проходящей через три точки множества. Если при сравнении несколько пар одинаковых отрезков - необходимо найти наименьшую пару – это и будет минимальный радиус окружности. (Рис.№1)

Рис.№1

Метод 2.Второй метод заключается в том, что бы искать минимальный радиус окружности при помощи соединения множество точек между собой, и в результате получение множество геометрических фигур ( в данном случае геометрические фигуры – треугольники). Затем необходимо найти расстояние сторон треугольника. Для этого возьмем формулу нахождения расстояния между двумя точками (D=). В случаи, если стороны выходящие из одной точки равны – это и есть радиусы окружности, так как через равные отрезки, выходящие из одной точки можно провести окружность с центром точки соединения этих отрезков. В случае, если в конечном результате вычисления несколько равных сторон, выходящих из одной точки, необходимо найти минимальный радиус окружности. Минимальным радиусом будут стороны с наименьшей длиной (рис.№ 2).

ІІІ) Анализ метода решения:

Первый метод более эффективен, чем второй, так как требует меньшее количество арифметических расчетов, и в памяти будет занимать меньшее количество ресурсов.

ІY) Формализация выбранного метода:

1) D1=

D2=

D3=;

2) Если D1=D3, то выполняется пункт 3, иначе пункт 4;

3) D1, D3 - радиусы окружности;

4) Если D2=D3, то выполняется пункт 5, иначе пункт 6;

5) D2, D3 – радиусы окружности;

6) Если D1=D2 , то выполняется пункт 7, иначе пункт 8;

7) D1, D2 – радиусы окружности;

8) Если D1=D2 , и/или D2=D3, и/или D1=D3, то выполняется пункт 9;

9) В случаи пункта 8 необходимо сравнить на меньший радиус:

D1=D2 D1=D3 D2=D3

D1D3 D1D2 D2D1

D1D3 D1D2 D2D1

D2D3 D3D2 D3D1

D2D3 D3D2D1 D3D1

10) Затем необходимо повторить это с оставшимися точками пока не перегенирируются все точки.

YІ. Геометрическое решение задачи

A= (-5;0);

B= (-3;2);

E= (0;1);

C= (-3;-2), так как D=, отсюда

1) AB=

AE=

AC=

Так как AB=AC, ABAE, ACAE, значит АВ и АС- радиусы окружности с центром в точке А.

2) АВ=

ЕВ=

СВ=

Так как АВЕВ, ЕВСВ, АВСВ, значит АВ, ЕВ, СВ- не являются радиусами окружности и точка В- не является центром окружности.

3) АЕ=

СЕ=

ВЕ=

Так как АЕСЕ, СЕВЕ, АЕВЕ, значит АЕ, СЕ, ВЕ- не являются радиусами окружности и точка Е- не является центром окружности.

4) АС=

ЕС=

СВ=

Так как АСЕС, ЕССВ, АССВ, значит АС, ЕС, СВ- не являются радиусами окружности и точка С- не является центром окружности.

Из данного множества точек можно провести только одну окружность с минимальным радиусом, проходящей через три точки множества. Отсюда следует, что минимальным радиусом являются отрезки АВ и АС.

Алгоритм реализации:

выполнять

ввод

n


пока ((n>3) и (n<20))

для i:=1..m

Вывод

‘Введите координаты’,I,’-ой точки.’


Ввод

D[i].x, D[i].y


Вывод

‘D[‘,i,’].x =’,D[i].x;

‘D[‘,i,’].y =’,D[i].y;


для i:=1..(n-3)

для k:=i+1..(n-2)

для l:=j+1..(n-1)

для j:=l+1...n


dk:= (D [i].x-D [k].x)²+(D [i].y-D [k].y)²;

dl:= (D [i].x-D [l].x)²+( D[i].y-D [l].y)² ;


dj= (D [j].x-D [j].x)²+(D [j].y-D [j].y)² ;


Если (dk=dl) или (dk=dj) тогда

Вывод

‘Точка ',i,'- является центром окружности!'

Иначе

Вывод

'Точка ',i,' не является центром окружности!'


Если (dk=dl) или (dj=dl) тогда

Вывод

' dl- возможный радиус окружности!'

Иначе

Вывод

'dl-не образует радиус..'

Если (dk=dj) или (dk=dl) тогда

Вывод

' dk- возможный радиус окружности!'

Иначе

Вывод

'dk-не образует радиус.. '

Если (dj=dl) или (dj=dk) тогда

Вывод

' dj- возможный радиус окружности!’

Иначе

Вывод

' dj-не образует радиус’

если (dk<dj) и (dk=dl) то

Вывод

' dk- Наименьший радиус окружности!'

Если (dk<dl) и (dk=dj) то

Вывод

' dl- Наименьший радиус окружности!'

Если (dk=dj) и (dl=dk) тогда

Вывод

' dk и dj и dl- Наименьший радиус окружности!'

Листинг программы:

Program alex;

uses crt;

Type Point = Record

x,y : real;

End;

pnt = Array [1..20] Of Point;

var

q, nstr,cstr:string;

c:char;

D:pnt;

l,n,i,k,j,code:integer;

di,dj,dk,dl,Dmin:real;

begin

clrscr;

writeln(' Донецкий государственный институт искусственного интеллекта');

writeln;

writeln;

gotoxy(40,6);

write('Кафедра програмного обеспечения');

gotoxy(40,7);

writeln(' интеллектуальных систем');

gotoxy(19,10);

writeln(' Лабораторная работа #2');

writeln(' по курсу:"Алгоритмизация вычислительных процессов"');

writeln(' тема:"Разработка алгоритмов и программы"');

gotoxy(60,20);

write('Выполнил:');

gotoxy(60,21);

write(‘');

gotoxy(60,22);

write();

writeln;

writeln;

writeln;

write('Нажмите любую клавишу');

readkey;

clrscr;

writeln(' Задание: Задано множество точек. Найти параметры окружности');

writeln('минимального радиуса проходящей через три точки множества.');

gotoxy(1,25);

write('Нажмите любую клавишу...');

readkey;

clrscr;

repeat

Writeln('Введите количество точек');

readln(nstr);

writeln;

val(nstr,n,code);

if (code<>0) then

begin

clrscr;

writeln('Это не число! Попробуйте еще раз.');

n:=5;

end;

if not( n in[3..20]) then

begin

clrscr;

code:=1;

writeln('Число не находится в заданном диапазоне! Попробуйте еще раз')

end;

until (code=0);

clrscr;

for i:=1 to n do

begin

repeat

write('Введите координату Х ',i,'-ой точки: ');

readln(cstr);

val(cstr,D[i].x,code);

if (code<>0) then

begin

writeln('Это не число! Попробуйте еще раз.');

continue

end;

clrscr;

if ((D[i].x>100) or (D[i].x<-100)) then

begin

clrscr;

writeln('Диапазон координат точек от -100 до 100!');

code:=1;

continue

end;

until (code=0);

repeat

write('Введите координату Y ',i,'-ой точки: ');

readln readln val(cstr,D[i].y,code);

if (code<>0) then

begin

clrscr;

writeln('Это не число! Попробуйте еще раз.');

code:=1;

continue

end;

clrscr;

if ((D[i].y>100) or (D[i].y<-100)) then

begin

clrscr;

writeln('Диапазон координат точек от -100 до 100!');

code:=1;

continue

end;

until (code=0);

end;

for i:=1 to n do

begin

writeln('D[',i,'].x=',D[i].x);

writeln('D[',i,'].y=',D[i].y);

end;

for i:= 1 to (n-3) do

for k:= i+1 to (n-2) do

for l:= k+1 to (n-1) do

for j:= l+1 to n do

begin

begin

begin

begin

dk:=Sqrt(Sqr(D[i].x-D[k].x)+Sqr(D[i].y-D[k].y));

dl:=Sqrt(Sqr(D[i].x-D[l].x)+Sqr(D[i].y-D[l].y));

dj:=Sqrt(Sqr(D[i].x-D[j].x)+Sqr(D[i].y-D[j].y));

Dmin:=dk;

begin

if (dk=dl) or (dj=dl) then

writeln ('',dl:7:2,' dl-возможный радиус окружноости')

else

writeln ('dl-не образует радиус');

if (dk=dj) or (dk=dl) then

writeln ('',dk:7:2,' dk-возможный радиус окружности')

else

writeln ('dk-не образует радиус');

if (dj=dl) or (dj=dk) then

writeln ('',dj:7:2,' dj-возможный радиус окружности')

else

writeln ('dj-не образует радиус');

if (dk=dl) or (dk=dj) then

writeln ('Точка ',i,' является центром окружности')

else

writeln ('Точка ',i,' не является центром окружности!');

end;

begin

if (dk<dj) and (dk=dl) then

writeln ('dk i dl-наименьший радиус окружности') ;

if (dk<dl) and (dk=dj) then

writeln ('dk i dj-наименьший радиус окружности');

if (dk=dj) and (dk=dl) then

writeln ('dk i dj i dl-наименьший радиус окружности');

end;

end;

end;

end;

end;

readLn;

end.

Экранные формы:

Вывод:

В ходе лабораторной работы я изучил навыки описания метода решения математической модели на примере решения задач аналитической геометрии.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений06:39:14 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
13:23:32 29 ноября 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
19:47:06 28 ноября 2015

Работы, похожие на Лабораторная работа: Разработка математической модели на основе описанных методов

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150559)
Комментарии (1836)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru