Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Доклад: Измерение поверхностного натяжения методом лежащей капли ( газового пузырька)

Название: Измерение поверхностного натяжения методом лежащей капли ( газового пузырька)
Раздел: Рефераты по математике
Тип: доклад Добавлен 03:19:52 04 февраля 2004 Похожие работы
Просмотров: 223 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

.

Метод основан на определении диаметра и высоты газового пузырька или капли. Большие размеры пузырька способствуют его деформации в направлении силы земного притяжения. Помимо этого на деформацию оказывает влияние поверхностное натяжение среды, в которой находится пузырек. Если речь идет о капле, то кривизну поверхности определяет поверхностное натяжение жидкости, составляющей каплю.

Существует одна интересная работа, посвященная выявлению закономерности между деформацией пузырька и поверхностным натяжением: А.Ю.Кошевник, М.М.Кусаков, Н.М.Лубман, ЖФХ, 27, вып. 12, стр. 1887, 1953г. Следуя выводам авторов, можно утверждать, что поверхностное натяжение вычисляется следующим образом (см. рисунок):

 = d2 g /H,

где

d - диаметр пузырька;

 - плотность исследуемой среды;

g - ускорение свободного падения;

1/H - параметр, зависящий от d/2h. Вычисляется с помощью таблицы.

В сокращенном виде таблица выглядит следующим образом:

d/2h 1/H d/2h 1/H
1,15 0,3304 1,6 0,06132
1,2 0,2373 1,65 0,05527
1,25 0,1824 1,7 0,05018
1,3 0,1466 1,75 0,04584
1,35 0,1212 1,8 0,04211
1,4 0,1027 1,85 0,03886
1,45 0,0885 1,9 0,03604
1,5 0,07749 1,95 0,03353
1,55 0,06860 2,00 0,03132

На первый взгляд, достаточно сложно собрать экспериментальную установку для определения поверхностного натяжения. Первое, что приходит в голову - это использовать катетометр, который позволяет определять размеры предмета на расстоянии. Однако, такой прибор очень дорог, особенно в наше время. Возможность использования хорошей фотографической аппаратуры тоже энтузиазма не вызывает.

Мой личный опыт показывает, что можно обойтись более дешевыми средствами. В свое время я занимался фотографированием газовых пузырьков методом экспонирования изображения непосредственно на фотобумагу формата А4. В основе установки был разобранный фильмоскоп, источник света которого освещал кювету с исследуемой жидкостью, а объектив проецировал крупное изображение на экран с фотобумагой. Фокусное расстояние объектива было 78 мм.

Конструкция кюветы была проще некуда: обычная спектрофотометрическая кювета (l=5 см) накрытая покровным стеклом. Под стекло выдувался пузырек воздуха. Кювета стояла в лотке с песком, чтобы ее можно было легко выровнять вдавливанием в песок с помощью пузырькового уровня.

Прежде чем добиться удовлетворительных результатов, мне пришлось преодолеть проблему с калибровкой. Следовало найти необходимый эталон с известными размерами и поместить его точно в то место, где перед этим находился пузырек воздуха. Хорошо подошел в качестве эталона шарик от подшипника. Поскольку он идеально кругл, очень легко подсчитать вертикальную и горизонтальную поправки. Я имею в виду то обстоятельство, что изображение шарика не будет круглым, поскольку экран, на который проецируется изображение, располагается не строго перпендикулярно оптической оси объектива, а поправки позволят вычислять истинные величины высоты и ширины проецируемого объекта.

Проблему с позиционированием шарика и пузырька воздуха я решил тоже просто: над позиционируемым объектом я поместил обычную трубку с диаметром, приблизительно равным диаметру шарика и пузырька. Если глядеть через нее, не приближая глаз к трубке, то можно добиться того, что края трубки и края шарика будут близки. Это значит, что объект можно будет достаточно точно помещать в одно и тоже место. Сами за себя говорят результаты измерений размера шарика:

Результаты измерения изображения шарика диаметром 7,938 мм при температуре 220 С.

N опыта высота, мм ширина, мм
1 169,4 170,4
2 169,5 170,25
3 169,6 170,25
среднее 169,5 170,3

Несложный расчет показывает, что ошибка операции позиционирования и измерения составляет 0,06%.

Об алгоритме измерения параметров газового пузырька я могу рассказывать долго и с восторгом, но в настоящее время, когда можно без труда найти компьютер со сканером, это никому не интересно.

Скажу одно: в обработке изображений объектов эллиптической формы без компьютера я преуспел. Делал я это с помощью штангенциркуля, прозрачной пленки для эпидиаскопа, швейной иглы и линейки.

Не нужно говорить о том, что для уменьшения ошибки опыты нужно проводить сериями. Каждая серия должна состоять из фотографирования эталона (шарика) и анализируемого объекта (капли или пузырька). Фотографирование должно проводиться на фотобумаге одной партии. После проявления, степень влажности фотобумаги должна быть одинаковой.

Качество обработки изображений было подстать точности позиционирования пузырька воздуха. Результаты экспериментов, проведенных на одном пузырьке, были следующими:

N опыта h, мм d, мм
1 78,65 252,5
2 78,6 252,2
3 78,6 252,35
среднее 78,6 252,4

*) В каждом опыте пузырек заново позиционировался.

Полученные результаты позволяют надеяться, что можно проводить измерения поверхностного натяжения с точностью 0,1 дин/см.

Только в одном я не преуспел. Я наивно полагал, что покровное стекло, под которое выдувался пузырек, может быть шероховатым (матовым). Шероховатость была нужна для того, чтобы удерживать пузырек на одном месте. Однако оказалось, что шероховатое стекло не позволяет добиться воспроизводимых результатов. По-видимому, следует использовать слабовогнутое стекло, благо это испробовано в ряде работ.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений21:39:54 18 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
09:42:42 24 ноября 2015

Работы, похожие на Доклад: Измерение поверхностного натяжения методом лежащей капли ( газового пузырька)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151180)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru