Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Математичне моделювання економічних систем

Название: Математичне моделювання економічних систем
Раздел: Рефераты по информатике, программированию
Тип: контрольная работа Добавлен 00:03:06 09 июня 2009 Похожие работы
Просмотров: 68 Комментариев: 3 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Міністерство освіти і науки України

Черкаський національний університет імені Богдана Хмельницького

Ф акультет інформаційних технологій і

біомедичної кібернетики

РОЗРАХУНКОВА РОБОТА

з курсу „Математичне моделювання економічних систем”

студента 4-го курсу спеціальності

«інтелектуальні системи прийняття рішень»

Валяєва Олександра В’ячеславовича

Черкаси – 2006 р.

Зміст

Зміст

Завдання 1. Задача лінійного програмування

Завдання 2. Задача цілочислового програмування

Завдання 3. Задача дробово-лінійного програмування

Завдання 4. Транспортна задача

Завдання 5. Задача квадратичного програмування

Список використаної літератури


Завдання 1 . Задача лінійного програмування

Для заданої задачі лінійного програмування побудувати двоїсту задачу. Знайти розв’язок прямої задачі геометричним методом і симплекс-методом. Знайти розв’язок двоїстої задачі, використовуючи результати розв’язування прямої задачі симплекс-методом:

3. ,

Розв ′язання г еометричним методом

Побудуємо прямі, рівняння яких одержуються внаслідок заміни в обмеженнях знаків нерівностей на знаки рівностей.

I: 6 0
0 9
II: 0 -6
6 0
III: 0 4
4 0

Визначимо півплощини, що задовольняють нашим нерівностям.

Умовам невід’ємності та відповідає перша чверть.

Заштрихуємо спільну частину площини, що задовольняє всім нерівностям.

Побудуємо вектор нормалі .

Максимального значення функція набуває в точці перетину прямих I та II .

Знайдемо координати цієї точки.

Приведемо систему до канонічного вигляду

X2

X*

X1

Відповідь:

Розв ′язання симплекс-методом

Приведемо систему рівнянь до канонічного вигляду

x(0) =(0,0,18,6,0,4)

Цільова функція

Побудуємо симплекс-таблицю

I базис Cб P0 2 3 0 0 0 -M
P1 P2 P3 P4 P5 P6
1 P3 0 18 3 2 1 0 0 0
2 P4 0 6 -1 1 0 1 0 0
3 P6 -M 4 1 1 0 0 -1 1
4 0 -2 -3 0 0 0 0
5 -4 -1 -1 0 0 1 0

Отриманий план не оптимальний


Обраний ключовий елемент (3,2)

I базис Cб P0 2 3 0 0 0 -M
P1 P2 P3 P4 P5 P6
1 P3 0 10 1 0 1 0 2 -2
2 P4 0 2 -2 0 0 1 1 -1
3 P2 3 4 1 1 0 0 -1 -1
4 12 1 0 0 0 -3 -3
5 0 0 0 0 0 0 -1

Отриманий план не оптимальний

Обраний ключовий елемент (2,5)

I базис Cб P0 2 3 0 0 0 -M
P1 P2 P3 P4 P5 P6
1 P3 0 6 5 0 1 -2 0 0
2 P5 0 2 -2 0 0 1 1 -1
3 P2 3 6 -1 1 0 1 0 0
4 18 -5 0 0 3 0 0
5 0 0 0 0 0 0 -1

Отриманий план не оптимальний

Обраний ключовий елемент (1,1)

I базис Cб P0 2 3 0 0 0 -M
P1 P2 P3 P4 P5 P6
1 P1 2 6/5 1 0 1/5 -2/5 0 0
2 P5 0 22/5 0 0 2/5 1/5 1 -1
3 P2 3 36/5 0 1 1/5 3/5 0 0
4 24 0 0 1 1 0 0
5 0 0 0 0 0 0 1

План оптимальний

Розв’язок : X* (,) F* =24;

Розв’язок двоїстої задач

Побудуємо двоїсту функцію

3. ,

Система обмежень

Скористаємось теоремою

Якщо задача лінійного програмування в канонічній формі (7)-(9) має оптимальний план , то є оптимальним планом двоїстої задачі

,,

Розв’язок:

Fmin * = 9,6;

Завдання 2. Задача цілочислового програмування

Для задачі із завдання 1, як для задачі цілочислового програмування, знайти розв’язки геометричним методом і методом Гоморі.

Розв ′язання геометричним методом

,


Відповідь:

Розв ′язання методом Гомор і

Наведемо останню симплекс-таблицю

I базис Cб P0 2 3 0 0 0 -M
P1 P2 P3 P4 P5 P6
1 P1 2 6/5 1 0 1/5 -2/5 0 0
2 P5 0 22/5 0 0 2/5 1/5 1 -1
3 P2 3 36/5 0 1 1/5 3/5 0 0
4 24 0 0 1 1 0 0
5 0 0 0 0 0 0 1

Побудуємо нерівність Гоморі за першим аргументом.

I базис Cб P0 2 3 0 0 0 0
P1 P2 P3 P4 P5 P7
1 P1 2 6/5 1 0 1/5 -2/5 0 0
2 P5 0 22/5 0 0 2/5 1/5 1 0
3 P2 3 36/5 0 1 1/5 3/5 0 0
4 P7 0 -1/5 0 0 -1/5 -3/5 0 1
5 24 0 0 1 1 0 0

Обраний розв’язковий елемент (4,4)

I базис Cб P0 2 3 0 0 0 0
P1 P2 P3 P4 P5 P7
1 P1 2 1 1 0 0 -1 0 0
2 P5 0 4 0 0 0 11/5 1 0
3 P2 3 7 0 1 0 0 0 0
4 P4 0 2 0 0 1 3 0 1
5 14 0 0 0 2 0 0

Отриманий план являється оптимальним і цілочисельним.

Розв’язок : X* (1,7) Fmax * =23;

Відповідь: цілочисельною точкою максимуму даної задачі є точка (1,7)

Завдання 3. Задача дробово-лінійного програмування

Для задачі дробово-лінійного програмування знайти розв’язки геометричним методом і симплекс-методом:

,

Розв ′язання геометричним методом

Визначимо, в яку сторону потрібно обертати пряму навколо початку координат, щоб значення цільової функції збільшувалось. Таким чином ми визначимо яка з крайніх точок є точкою максимуму.

f (1;0) = 2/3 f (0;1) = 3/7

Тобто при крутінні прямої проти годинникової стрілки значення цільової функції зменшується.

Використаємо результати обчислень і геометричних побудов з попереднього завдання.



З графіка очевидно, що розв’язок лежить на перетині двох прямих. Для визначення точки перетину прямої І та ІІ розв′яжемо систему з двох рівнянь.

Відповідь: функція набуває максимального значення при x 1 =6/5, x 2 =36/5.

Розв ′язання симплекс-методом

Перейдемо від задачі дробово-лінійного програмування до задачі лінійного програмування.

Вводим заміну:

Вводим ще одну заміну:

Після замін наша задача має такий вигляд:


Приведемо її до канонічної форми і доповнимо її базисами:

Повернемось до заміни:

x1 =0 x2 =6

Завдання 4. Транспортна задача

Для заданих транспортних задач скласти математичну модель і розв’язати їх методом потенціалів, використавши для визначення початкового плану метод мінімального елемента або північно-західного кута.

1. Запаси деякого однорідного продукту знаходяться на трьох пунктах постачання (базах) A1, A2, A3 і цей продукт потрiбно доставити в три пункти споживання (призначення) B1, B2, B3. Задача полягає в тому, щоб визначити, яку кiлькiсть продукту потрiбно перевезти з кожного пункту постачання (бази) до кожного пункту споживання (призначення) так, щоб забезпечити вивезення всього наявного продукту з пунктів постачання, задовільнити повністю потреби кожного пункту споживання і при цьому сумарна вартiсть перевезень була б мiнiмальною (зворотні перевезення виключаються). Вартість перевезеньс ij (у грн.) з бази А i до пункту призначення Bj вказана в таблиці, де також наведені дані про запаси ai (у тонанх) продукту і його потреби (у тонах) bj .


Пункти Пункти споживання Запаси
постачання B1 B2 B3
A1 3 5 7 270
A2 6 9 4 180
A3 11 8 10 300
Потреби 260 280 300

Для даної транспортної задачі не виконується умова балансу , тому введемо додатковий пункт постачання з запасами 840-750=90 і тарифами С4 s =0 (i=1,2,3). Тоді одержимо замкнену транспортну задачу, яка має розв’язок. Її математична модель має вигляд:

хi ,

j ³ 0, 1£i£4, 1£j£3.

Пункти Пункти споживання Запаси
постачання B1 B2 B3
A1 3 5 7 270
A2 6 9 4 180
A3 11 8 10 300
A4 0 0 0 90
Потреби 260 280 300

840

840


За методом північно-західного кута знайдемо опорний план

Пункти Пункти споживання Запаси
постачання B1 B2 B3
A1

3

260

5

10

7

270

A2

6

9

180

4

180

A3

11

8

90

10

210

300

A4

0

0

0

90

90

Потреби 260 280 300

840

840

За методом північно-західного кута опорний план має вигляд:

.

F=3*260+5*10+9*180+8*90+10*210+0*90=5270

Перевіримо чи буде він оптимальним.

Знаходимо потенціали для пунктів постачання

Для тих клітинок, де, розв’яжемо систему рівнянь

Знаходимо з системи:

.


Для тих клітинок, де, знайдемо числа

Оскільки , то план Х1 не є оптимальним. Будуємо цикл перерахунку

Пункти Пункти споживання Запаси
постачання B1 B2 B3
A1 3 5 7 0

270

260 10
A2 6 1 9 4 7

180

- 180 +
A3 11 -5 8 10

300

+ 90 - 210
A4 0 -4 0 -2 0

90

90
Потреби 260 280 300

840

840

В результаті перерахунку отримаємо

Пункти Пункти споживання Запаси
постачання B1 B2 B3
A1

3

260

5

10

7

270

A2

6

9

4

180

180

A3

11

8

270

10

30

300

A4

0

0

0

90

90

Потреби 260 280 300

840

840

Наступний опорний план

F=3*260+5*10+9*180+8*90+10*210+0*90=4010

Для тих клітинок, де, розв’яжемо систему рівнянь

Знаходимо з системи:


.

Для тих клітинок, де, знайдемо числа

Отже план є оптимальним F =4010

Завдання 5. Задача квадратичного програмування

Розв’язати задачу квадратичного програмування геометричним методом та аналітичним методом, використовуючи функцію Лагранжа і теорему Куна-Таккера:

Розв’язання графічним методом

,

Графік кола має центр в точці (-1, 4)

X * (0 , 4); F * ( X * )=-16

Розв’язання аналітичним методом

,

Складемо функцію Лагранжа:

Система обмежень набуде вигляду:

Перенесемо вільні члени вправо, і при необхідності домножимо на -1

Зведемо систему обмежень до канонічного вигляду

Введемо додаткові змінні для утворення штучного базису

Розв’яжемо задачу лінійного програмування на знаходження мінімуму.

Введемо додаткові прямі обмеження на змінні.

,

Векториз коефіцієнтів при невідомих:

Розв’язуємо отриману задачу звичайним симплекс-методом

I базис Cб P0 0 0 0 0 0 0 0 0 0 0 M M
Px1 Px 2 Py1 Py2 Py3 Pu1 Pu2 Pv1 Pv2 Pv3 Pz1 Pz2
1 Pz1 M 2 -2 0 -3 1 1 -1 0 0 0 0 1 0
2 Pu2 0 8 0 2 2 1 -1 0 1 0 0 0 0 0
3 Pv1 0 18 -3 -2 0 0 0 0 0 1 0 0 0 0
4 Pv2 0 6 -1 1 0 0 0 0 0 0 1 0 0 0
5 Pz2 M 4 1 1 0 0 0 0 0 0 0 -1 0 1
5 -M M -3M M M -M 0 0 0 -M 0 0

Обраний розв’язковий елемент (5,2)

I базис Cб P0 0 0 0 0 0 0 0 0 0 0 M M
Px1 Px 2 Py1 Py2 Py3 Pu1 Pu2 Pv1 Pv2 Pv3 Pz1 Pz2
1 Pz1 M 2 -2 0 -3 1 1 -1 0 0 0 0 1 0
2 Pu2 0 0 -2 0 2 1 -1 0 1 0 0 2 0 0
3 Pv1 0 26 -1 0 0 0 0 0 0 1 0 -2 0 0
4 Pv2 0 2 -2 0 0 0 0 0 0 0 1 1 0 0
5 Px 2 0 4 1 1 0 0 0 0 0 0 0 -1 0 1
5 -2М 0 -3М М M 0 0 0 0 0 0

Обраний розв’язковий елемент (2,4)

I базис Cб P0 0 0 0 0 0 0 0 0 0 0 M M
Px1 Px 2 Py1 Py2 Py3 Pu1 Pu2 Pv1 Pv2 Pv3 Pz1 Pz2
1 Pz1 M 2 0 0 -5 0 2 -1 -1 0 0 -2 1
2 Py2 0 0 -2 0 2 1 -1 0 1 0 0 2 0
3 Pv1 0 26 -1 0 0 0 0 0 0 1 0 -2 0
4 Pv2 0 2 -2 0 0 0 0 0 0 0 1 1 0
5 Px 2 0 4 1 1 0 0 0 0 0 0 0 -1 0
5 2M 0 0 -5M 0 2M -M -M 0 0 -2M 0

Обраний розв’язковий елемент (1,5)

I базис Cб P0 0 0 0 0 0 0 0 0 0 0 M M
Px1 Px 2 Py1 Py2 Py3 Pu1 Pu2 Pv1 Pv2 Pv3 Pz1 Pz2
1 Py3 0 1 0 0 -5/2 0 1 -1/2 -1/2 0 0 -1
2 Py2 0 1 -2 0 -1/2 1 0 -1/2 -1/2 0 0 1
3 Pv1 0 26 -1 0 0 0 0 0 0 1 0 -2
4 Pv2 0 2 -2 0 0 0 0 0 0 0 1 1
5 Px 2 0 4 1 1 0 0 0 0 0 0 0 -1
5 0 0 0 0 0 0 0 0 0 0 0

План отриманий в результаті розв’язування задачі симплекс-методом, не є оптимальним так як він не задовольняє умови:

Отже перерахуємо симплекс-таблицю ще раз.

Обраний розв’язковий елемент (2,7)

I базис Cб P0 0 0 0 0 0 0 0 0 0 0
Px1 Px 2 Py1 Py2 Py3 Pu1 Pu2 Pv1 Pv2 Pv3
1 Py3 0 10 0 2 -3 1 1 -1 0 0 0 -2
2 Pu2 0 18 0 4 -1 2 0 -1 1 0 0 -2
3 Pv1 0 30 0 1 0 0 0 0 0 1 0 -3
4 Pv2 0 10 0 2 0 0 0 0 0 0 1 -1
5 Px 2 0 4 1 1 0 0 0 0 0 0 0 -1
5 0 0 0 0 0 0 0 0 0 0 0

Отриманий план оптимальнийX* (0,4); F* (X* )=-16

Список використаної літератури

1. Карманов В. Г. Математическое программирование: Учеб. пособие. — 5-е издание., стереотип. — М.: ФИЗМАТЛИТ, 2001. — 264 с.

2. Моисеев Н. Н., Иванилов Ю. П., Столярова Е. М. Методы оптимизации —М.: Наука, 1978. — 352 с.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:25:20 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
11:23:49 29 ноября 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
19:38:33 28 ноября 2015

Работы, похожие на Контрольная работа: Математичне моделювання економічних систем

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151082)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru