Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Роль живых организмов в биологическом круговороте

Название: Роль живых организмов в биологическом круговороте
Раздел: Рефераты по биологии
Тип: реферат Добавлен 02:28:11 02 января 2010 Похожие работы
Просмотров: 3937 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Реферат на тему:

Роль живых организмов в биологическом круговороте

Введение

Круговорот биологический – явление непрерывного характера, циклического, закономерного, но не равномерного во времени и пространстве перераспределения веществ, энергии и информации в пределах экологических систем различного иерархического уровня организации – от биогеоценоза до биосферы. Круговорот веществ в масштабах всей биосферы называют большим кругом, а в пределах конкретного биогеоценоза – малым кругом биотического обмена.

Академик В.И. Вернадский первым постулировал тезис о важнейшей роли живых организмов в формировании и поддержании основных физико-химических свойств оболочек Земли. В его концепции биосфера рассматривается не просто как пространство, занятое жизнью, а как целостная функциональная система, на уровне которой реализуется неразрывная связь геологических и биологических процессов. Основные свойства жизни, обеспечивающие эту связь, - высокая химическая активность живых организмов, их подвижность и способность к самовоспроизведению и эволюции. В поддержании жизни как планетарного явления важнейшие значение имеет разнообразие ее форм, отличающихся набором потребляемых веществ и выделяемых в окружающую среду продуктов жизнедеятельности. Биологическое разнообразие – основа формирования устойчивых биогеохимических циклов вещества и энергии в биосфере Земле.

Вопросы о роли живых организмов в малом круговороте рассматривали такие ученые, педагоги как Николайкин Н.И., Шилов И.А., МелеховаО.П. и др.


1. Роль живых организмов в биологическом круговороте

Специфическое свойство жизни – обмен веществ со средой. Любой организм должен получать из внешней среды определенные вещества как источники энергии и материал для построения собственного тела. Продукты метаболизма, уже непригодные для дальнейшего использования, выводят наружу. Таким образом, каждый организм или множество одинаковых организмов в процессе своей жизнедеятельности ухудшают условия своего обитания. Возможность обратного процесса – поддержания жизненных условий или даже их улучшения, - определяется тем, что биосферу населяют разные организмы с разным типом обмена веществ.

В простейшем виде набор качественных форм жизни представлен продуцентами, консументами и редуцентами, совместная деятельность которых обеспечивает извлечение определенных веществ из внешней среды, их трансформацию на разных уровнях трофических цепей и минерализацию органического вещества до составляющих, доступных для очередного включения в круговорот (основные элементы, мигрирующие по цепям биологического круговорота, - углерод, водород, кислород, калий. Фосфор, сера и т.д.).

Продуценты - это живые организмы, которые способны синтезировать органическое вещество из неорганических составляющих с использованием внешних источников энергии. (Отметим, что получение энергии извне - общее условие жизнедеятельности всех организмов; по энергии все биологические системы - открытые) их называют также автотрофами, поскольку они сами снабжают себя органическим веществом. В природных сообществах продуценты выполняют функцию производителей органического вещества, накапливаемого в тканях этих организмов. Органическое вещество служит и источником энергии для процессов жизнедеятельности; внешняя энергия используется лишь для первичного синтеза.

Все продуценты по характеру источника энергии для синтеза органических веществ подразделяются на фотоавтотрофов и хемоавтотрофов. Первые используют для синтеза энергию солнечного излучения в части спектра с длиной волны 380-710 нм. Эго главным образом зеленые растения, но к фотосинтезу способны и представители некоторых других царств органического мира. Среди них особое значение имеют цианобактерии (сине-зеленые «водоросли»), которые, по-видимому, были первыми фотосинтетиками в эволюции жизни на Земле. Способны к фотосинтезу также многие бактерии, которые, правда, используют особый пигмент - бактериохлорин - и не выделяют при фотосинтезе кислород. Основные исходные вещества, используемые для фотосинтеза,- диоксид углерода и вода (основа для синтеза углеводов), а также азот, фосфор, калий и другие элементы минерального питания.

Создавая органические вещества на основе фотосинтеза, фотоавтотрофы, таким образом, связывают использованную солнечную энергию, как бы запасая ее. Последующее разрушение химических связей ведет к высвобождению такой «запасенной» энергии. Это относятся не только к использованию органического топлива; «запасенная» в тканях растений энергия передается в виде пищи по трофическим цепям и служит основой потоков энергии, сопровождающих биогенный круговорот веществ.

Хемоавтотрофы в процессах синтеза органического вещества используют энергию химических связей. К этой группе относятся только прокариоты: бактерии, архебактерии и отчасти сине-зеленные. Химическая энергия высвобождается в процессах окисления минеральных веществ. Экзотермические окислительные процессы используются нитрифицирующими бактериями (окисляют аммиак до нитритов, а затем до нитратов), железобактериями (окисление закисного железа до окисного), серобактериями (сероводород до сульфатов). Как субстрат для окисления используется также метан, СО и некоторые другие вещества.

При всем многообразия конкретных форм продуцентов-автотрофов их общая биосферная функция едина и заключается в вовлечении элементов неживой природы в состав тканей организмов и таким образом в общий биологический круговорот. Суммарная масса автотрофов-продуцентов составляет более 95 % массы всех живых организмов в биосфере.

Консументы. Живые существа, не способные строить свое тело на базе использования неорганических веществ, требующие поступления органического вещества извне, в составе пищи, относятся к группе гетеротрофных организмов, живущих за счет продуктов, синтезированных фото- или хемоситетиками. Пища, извлекаемая тем или иным способом из внешней среды, используется гетеротрофами на построение собственного тела и как источник энергии для различных форм жизнедеятельности. Таким образом, гетеротрофы используют энергию, запасенную автотрофами в виде химических связей синтезированных ими органических веществ. В потоке веществ по ходу круговорота они занимают уровень потребителей, облигатно связанных с автотрофами организмами (консументы 1 порядка) или с другими гетеротрофами, которыми они питаются (консументы II порядка).

К консументам относятся огромное количество живых организмов из разных таксонов. Их нет лишь среди цианобактерий и водорослей. Из высших растений к консументам относятся бесхлорофилльные формы, паразитирующие на других растениях; частично положение консументов занимают и растения со смешанным питанием (например, насекомоядные типа росянки). Все животные - консументы, и их роль в поддержании устойчивого биогенного круговорота очень велика.

Общее значение консументов в круговороте веществ своеобразно и неоднозначно. Они не обязательны в прямом процессе круговорота: искусственные замкнутые модельные системы, составленные из зеленых растений и почвенных микроорганизмов, при наличии влаги и минеральных солей могут существовать неопределенно долгое время за счет фотосинтеза, деструкции растительных остатков и вовлечения высвобожденных элементов в новый круговорот. Но это возможно лишь в стабильных лабораторных условиях. В природной обстановке возрастает вероятность гибели таких простых систем от многих причин. «Гарантами» устойчивости круговорота и оказываются в первую очередь консументы.

В процессе собственного метаболизма гетеротрофы разлагают полученные в составе пищи органические вещества и на этой основе строят вещества собственного тела. Трансформация первично продуцированных автотрофами веществ в организмах консументов ведет к увеличению разнообразия живого вещества. Разнообразие же необходимое условие устойчивости любой кибернетической системы на фоне внешних и внутренних возмущений. Живые системы - от организма до биосферы в целом - функционируют по кибернетическому принципу обратных связей.

Животные, составляющие основную часть организмов-консументов, отличаются подвижностью, способностью к активному перемещению в пространстве. Этим они эффективно участвуют в миграции живого вещества, дисперсии его по поверхности планеты, что, с одной стороны, стимулирует пространственное расселение жизни, а с другой служит своеобразным «гарантийным Механизмом» на случай уничтожения жизни в каком-либо месте в силу тех или иных причин.

Примером такой «пространственной гарантии может служить широко известная катастрофа на о. Кракатау: в результате извержения вулкана в 1883 г. жизнь на острове была полностью уничтожена, но в течение всего 50 лет восстановилась - было зарегистрировано порядка 1200 видов. Заселение шло главным образом за счет не затронутых извержением Явы, Суматры и соседних островов, откуда разными путями растения и животные вновь заселили покрытый пеплом и застывшими потоками лавы остров. При этом первыми (уже через 3 года) на вулканическом туфе и пепле появились пленки цианобактерий. Процесс становления устойчивых сообществ на острове продолжается; лесные ценозы еще находятся на ранних стадиях сукцессии и сильно упрощены по структуре.

Наконец, чрезвычайно важна роль консументов, в первую очередь животных, как регуляторов интенсивности потоков вещества и энергии по трофическим цепям. Способность к активной авторегуляции био- массы и темпов ее изменения на уровне экосистем и популяций отдельных видов в конечном итоге реализуется в виде поддержания соответствия темпов создания и разрушения органического вещества в глобальных системах круговорота. Участвуют в такой регуляторной системе не только консументы, но последние (особенно животные) отличаются наиболее активной и быстрой реакцией на любые возмущении баланса биомассы смежных трофических уровней.

В принципе система регулирования потоков вещества в биогенном круговороте, основанная на комплементарности составляющих эту систему экологических категорий живых организмов, работает по принципу безотходного производства. Однако в идеале этот принцип соблюден быть не может в силу большой сложности взаимодействующих процессов и влияющих на них факторов. Результатом нарушения полноты круговорота явились отложения нефти, каменного угля, торфа, сапропелей. Все эти вещества несут в себе энергию, первоначально запасенную в процессе фотосинтеза. Использование их человеком - как бы «отставленное во времени» завершение циклов биологического круговорота.

Редуценты. К этой экологической категории относятся организмы-гетеротрофы, которые, используя в качестве пищи мертвое органическое вещество (трупы, фекалия, растительный опад и пр.), в процессе метаболизма разлагают его до неорганических составляющих.

Частично минерализация органических веществ идет у всех живых организмов. Так, в процессе дыхания выделяется СО2, из организма выводятся вода, минеральные соли, аммиак и т.д. Истинными редуцентами, завершающий цикл разрушения органических веществ, следует поэтому считать лишь такие организмы, которые выделяют во внешнюю среду только неорганические вещества, готовые к вовлечению в новый цикл.

В категорию редуцентов входят многие виды бактерий и грибов. По характеру метаболизма это организмы-восстановители. Так, девитрифицирующие бактерии восстанавливают азот до элементарного состояния, сулъфатредуцирующие бактерия - серу до сероводорода. Конечные продукты разложения органических веществ - диоксид углерода, вода, аммиак, минеральные соли. В анаэробных условиях разложение идет дальше - до водорода; образуются также углеводороды.

Полный цикл редукции органического вещества более сложен и вовлекает большее число участников. Он состоит из ряда последовательных звеньев, в череде которых разные организмы-разрушители поэтапно превращают органические вещества сначала в более простые формы и только после этого в неорганические составляющие действием бактерий и грибов.

Уровни организации живой материи. Совместная деятельность продуцентов, консументов и редуцентов определяет непрерывное поддержание глобального биологического круговорота веществ в биосфере Земли. Этот процесс поддерживается закономерными взаимоотношениями составляющих биосферу пространственно-функциональных частей и обеспечивается особой системой связей, выступающих как механизм гомеостазирования биосферы - поддержания ее устойчивого функционирования на фоне изменчивых внешних и внутренних факторов. Поэтому биосферу можно рассматривать как глобальную экологическую систему, обеспечивающую устойчивое поддержание жизни в ее планетарном проявлении.

Любая биологическая (в том числе и экологическая) система характеризуется специфической функцией, упорядоченными взаимоотношениями составляющих систему частей (субсистем) и основывающимися на этих взаимодействиях регуляторными механизмами, определяющими целостность и устойчивость системы на фоне колеблющихся внешних условий. Из сказанного выше ясно, что биосфера в ее структуре и функции соответствует понятию биологической (экологической) системы.

На уровне биосферы как целого осуществляется всеобщая функциональная связь живого вещества с неживой природой. Ее структурно-функциональными составляющими (подсистемами), на уровне которых осуществляются конкретные циклы биологического круговорота, являются биогеоценозы (экосистемы).


2. Малый круговорот веществ в биосфере

Биологический (биогеохимический) круговорот (малый круговорот веществ в биосфере) – круговорот веществ, движущей силой которого является деятельность живых организмов. Биогеохимический круговорот веществ совершается в пределах биосферы. Главным источником энергии круговорота является солнечная радиация, которая порождает фотосинтез. В экосистеме органические вещества синтезируют автотрофами из неорганических веществ. Затем он потребляются гетеротрофами. В результате выделения в процессе жизнедеятельности или после гибели организмов органические вещества подвергаются минерализации, т.е. превращению в неорганические вещества. Эти неорганические могут быть вновь использованы для синтеза автотрофами органических веществ.

В биогеохимических круговоротах следует различать две части:

1. резервный фонд – это часть вещества, не связанная с живыми организмами;

2. обменный фонд – значительно меньшая часть вещества, которая связана прямым обменом между организмами и их непосредственным окружением.

В зависимости от расположения резервного фонда биогеохимические круговороты можно разделить на два типа:

1. круговороты газового типа с резервным фондом веществ в атмосфере и гидросфере (круговороты углерода, кислорода, азота);

2. круговороты осадочного типа с резервным фондом в земной коре (круговороты фосфора, кальция, железа и д.р.).

Круговороты газового типа совершенны, т.к. обладают большим обменным фондом, а значит способы к быстрой саморегуляции. Круговороты осадочного типа менее совершенны, они более инертны, т.к. основная масса вещества содержится в резервном фонде земной коре в «недоступном» живым организмам виде. Такие круговороты легко нарушаются от различного рода воздействий, и часть обмениваемого материала выходит из круговорота. Возвратиться опять круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом. Однако извлечь нужные живым организмам вещества из земной коры гораздо сложнее, чем из атмосферы.

Интенсивность биологического круговорота в первую очередь определяется температурой окружающей среды и количеством воды. Так, например, биологический круговорот интенсивнее протекает во влажных тропических лесах, чем в тундре. Кроме того, в тундре биологические процессы протекают только в теплое время года.

Продуценты, консументы, детритофаги и редуценты экосистемы, поглощая и выделяя различные вещества, взаимодействуют между собой четко и согласованно. Органические вещества и кислород, образуемые фотосинтезирующими растениями, - важнейшие продукты питания и дыхания консументов. В то же время выделяемые консументами диоксид углерода и минеральные вещества навоза и мочи являются биогенами, столь необходимыми продуцентами. Поэтому вещества в экосистемах совершают практически полный круговорот, попадая сначала в живые организмы, затем в абиотическую среду и вновь возвращаясь в живое. Вот один из основных принципов функционирования экосистем: получение ресурсов и переработка отходов происходят в процессе круговорота всех элементов.

Рассмотрим круговороты наиболее значимых для живых организмов веществ и элементов. К малому биогеохимическому круговороту биогенных элементов относятся: углерод, азот, фосфор, сера и др.

2.1 Круговорот углерода

Углерод существует в природе во многих формах, в том числе в составе органических соединений. Неорганическое вещество, лежащее в основе биогенного круговорота этого элемента, - диоксид углерода (СО2 ). В природе СО2 входит в состав атмосферы, а также находится в растворенном состоянии в гидросфере. Включение углерода в состав органических веществ происходит в процессе фотосинтеза, в результате которого на основе СО2 и Н2 О образуются сахара. В дальнейшем другие процессы биосинтеза преобразуют эти углероды в более сложные, а также в протеиды, липиды. Все эти соединения не только формируют ткани фотосинтезирующих организмов, но и служат источником органических веществ для животных и незеленных растений.

В процессе дыхания все организмы окисляют сложные органические вещества; конечный продукт этого процесса, СО2 , выводится во внешнюю среду, где вновь может вовлекаться в процесс фотосинтеза.

Углеродсодержащие органические соединения тканей живых организмов после их смерти подвергаются биологическому разложению организмами-редуцентами, в результате чего углерод в форме углекислоты вновь поступает в круговорот. Этот процесс составляет сущность так называемого почвенного дыхания.

При определенных условиях в почве разложение накапливающихся мертвых остатков идет замедленным темпом – через образование сапрофагами гумуса, минерализация которого воздействием грибов и бактерий может идти с различной, в том числе и с низкой, скоростью. В некоторых случаях цепь разложения органического вещества бывает неполной. В частности, деятельность сапрофагов может подавляться недостатком кислорода или повышенной кислотностью. В этом случае органические остатки накапливаются в виде торфа; углерод не высвобождается и круговорот приостанавливается. Аналогичные ситуации возникали и в прошлые геологические эпохи, о чем свидетельствуют отложения каменного угля и нефти.

В гидросфере приостановка круговорота углерода связана с включением СО2 в состав СаСО3 в виде известняков, мела, кораллов. В этом случае углерод выключается из круговорота на целые геологические эпохи. Лишь поднятие органогенных пород над уровнем моря приводит к возобновлению круговорота через выщелачивание известняков атмосферными осадками. А также биогенным путем – действием лишайников, корней растений.

Главным резервуаром биологически связанного углерода являются леса, они содержат до 500 млрд тонн этого элемента, что составляет 2/3 его запаса в атмосфере. Вмешательство человека в круговорот углерода приводит в возрастанию содержания СО2 в атмосфере и развитию парникового эффекта.

Скорость круговорота СО2 , т.е. время, за которое весь углекислый газ атмосферы проходит через живое вещество, составляет около 300 лет.

2.2 Круговорот азота

Главный источник азота органических соединений – молекулярный азот в составе атмосферы. Переход его в доступные живым организмам соединения может осуществляться разными путями. Так, электрические разряды при грозах синтезируют из азота и кислорода воздуха оксида азота, которые с дождевыми водами попадают в почву в форме селитры или азотной кислоты. Имеет место и фотохимическая фиксация азота.

Более важной формой усвоения азота является деятельность азот-фиксирующих микроорганизмов, синтезирующих сложные протеиды. Отмирая, они обогащают почву органическим азотом, который быстро минерализируются. Таким путем в почву ежегодно поступает около 25 кг азота на 1 га.

Наиболее эффективная фиксация азота осуществляется бактериями, формирующими симбиотические связи с бобовыми растениями. Образуемый ими органический азот диффундирует в ризосферу, а также включается в наземные органы растения-хозяина. Таким путем в наземных и подземных органах растений на 1 га накапливается за год 150-400 кг азота.

Существуют азотфиксирующие микроорганизмы, образующие симбиоз и другими растениями. В водной среде и на очень влажной почве непосредственную фиксацию атмосферного азота осуществляют цианобактерии. Во всех этих случаях азот попадает в растения в форме нитратов. Эти соединения через корни и проводящие пути доставляются в листья, где используются для синтеза протеинов; последние служат основой для азотного питания животных.

Экскреты и мертвые организмы составляют базу цепей питания организмов-сапрофагов, разлагающих органические соединения с постепенным превращением органических азотсодержащих веществ в неорганические. Конечным звеном этой редукционной цепи оказываются аммонифицирующие организмы, образующие аммиак, который затем может войти в цикл нитрификации. Таким образом цикл азота может быть продолжен.

В то же время происходит постоянное возвращение азота в атмосферу действием бактерий-денитрификаторов, которые разлагают нитраты до N2 . Эти бактерии активны в почвах, богатых азотом и углеродом. Благодаря их деятельности ежегодно с 1 га почвы улетучиваются до 50-60 кг азота.

Азот может выключаться из круговорота путем аккумуляции в глубоководных осадках океана. В известной мере это компенсируется выделением молекулярного N2 в составе вулканических газов.

2.3 Круговорот фосфора

Из всех макроэлементов (элементов, необходимых для всего живого в больших количествах) фосфор – один из самых редких в доступных резервуарах на поверхности Земли. В природе фосфор в больших количествах содержится в ряде горных пород. В процессе разрушения этих пород он попадает в наземные экосистемы или выщелачивается осадками и в конце концов оказывается в гидросфере. В обоих случаях этот элемент вступает в пищевые цепи. В большинстве случаев организмы-редуценты минерализуют органические вещества, содержащие фосфор, в неорганические фосфаты, которые вновь могут быть использованы растениями и таким образом снова вовлекаются в круговорот.

В океане часть фосфатов с отмершими органическими остатками попадает в глубинные осадки и накапливается там, выключаясь из круговорота. Процесс естественного круговорота фосфора в современных условиях интенсифицируется применением в сельском хозяйстве фосфорных удобрений, источником которых служат залежи минеральных фосфатов. Это может быть поводом для тревоги, поскольку соли фосфора при таком использовании быстро выщелачиваются, а масштабы эксплуатации минеральных ресурсов все время растут. Составляя в настоящее время около 2 млн. тонн в год.

2.4 Круговорот серы

Основной резерв фонд серы находится в отложении и почве, но в отличие от фосфора имеется резервный фонд и в атмосфере. Главная роль в вовлечение серы в биогеохимический круговорот принадлежит микроорганизмами. Одни из них восстановители, другие – окислители.

В горных породах сера встречается в виде сульфидов, в растворах – в форме иона, в газообразной фазе в виде сероводорода или сернистого газа. В некоторых организмах сера накапливается в чистом виде (S) и при их отмирании на дне морей образуются залежи самородной серы.

По содержанию в морской среде сульфат-ион занимает второе место после хлора и является основной доступной формой серы, которая потребляется автотрофами и включается в состав белков.

В наземных экосистемах сера поступает в растения из почвы в основном в виде сульфатов. В живых организмах сера содержится в белках, в виде ионов и т.д. После гибели живых организмов часть серы восстанавливается в почве микроорганизмами до HS, другая часть окисляется до сульфатов и вновь включается в круговорот. Образовавшийся сероводорода улетучивается в атмосферу, там окисляется и возвращается в почву с осадками.

Сжигание человеком ископаемого топлива, а также выбросы химической промышленности, приводит к накоплению в атмосфере сернистого газа (SO), который реагируя с парами воды, выпадает на землю в виде кислотных дождей.

Биогеохимические циклы в значительной степени подвержены влиянию человека. Хозяйственная деятельность нарушает их замкнутость, они становятся ацикличными.


Заключение

Сложные взаимоотношения, поддерживающие устойчивый круговорот веществ, а с ним и существование жизни как глобального явления нашей планеты, сформировались на протяжении длительной истории Земли.

Совместная деятельность различных живых организмов определяет закономерный круговорот отдельных элементов и химических соединений, включающий введение их в состав живых клеток, преобразования химических веществ в процессах метаболизма, выделение в окружающую среду и деструкцию органических веществ, в результате которой высвобождаются минеральные вещества, вновь включающиеся в биологические циклы.

Таким образом, процессы круговорота происходят в конкретных экосистемах, но в полном виде биогеохимические циклы реализуются лишь на уровне биосферы в целом. А совместная деятельность качественных форм жизни обеспечивает извлечение определенных веществ из внешней среды, их трансформацию на разных уровнях трофических цепей и минерализацию органического вещества до составляющих, доступных для очередного включения в круговорот (основные элементы, мигрирующие по цепям биологического круговорота, - углерод, водород, азот, калий, кальций и др.).

Список литературы

1. Колесников С.И. Экология. – Ростов на Дону: «Феникс», 2003.

2. Петров К.М. Общая экология: Взаимодействие общества и природы: Учебн. пособие. 2-е изд.- СПб.; Химия, 1998.

3. Николайкин Н.И. Экология.: Учеб. для вузов/ Николайкин Н.Н., Николайкина Н.Е., Мелехина О.П. – 2-е изд., перераб. и доп.- М.: Дрофа, 2003.

4. Хотунцев Ю.Л. Экология и экологическая безопасность: Учеб. пособие для студ. высш. пед. учеб. заведений. – М.: Издательский центр «Академия», 2002.

5. Шилов И.А. Экология: Учеб. для биол. и мед. спец. вузов И.А. Шилов.-4-е изд., испр.- М.: Высшая школа, 2003.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:16:09 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
19:32:58 28 ноября 2015

Работы, похожие на Реферат: Роль живых организмов в биологическом круговороте

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150895)
Комментарии (1842)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru