Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Эконометрика

Название: Эконометрика
Раздел: Рефераты по экономико-математическому моделированию
Тип: контрольная работа Добавлен 06:36:09 11 августа 2009 Похожие работы
Просмотров: 656 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Контрольная работа

По эконометрики

Обзор корреляционного поля

Эти данные скорее всего можно аппроксимировать при помощи линейной регрессии вида ŷ = а - b · x , как самой простой.

Рассчитаем необходимые суммы и запишем их в таблице № 1:

Таблица №1:

i x y x ² y ² x · y ŷ e A (%)
1 2,5 69 6,25 4761 172,5 66,40 2,60 6,75 3,76
2 3 65 9 4225 195 64,85 0,15 0,02 0,23
3 3,4 63 11,56 3969 214,2 63,61 -0,61 0,37 0,97
4 4,1 59 16,81 3481 241,9 61,44 -2,44 5,94 4,13
5 5 57 25 3249 285 58,65 -1,65 2,71 2,89
6 6,3 55 39,69 3025 346,5 54,61 0,39 0,15 0,70
7 7 54 49 2916 378 52,44 1,56 2,43 2,89
Сумма: 31,3 422 157,31 25626 1833,1 422,00 0,00 18,38 15,57
Среднее: 4,471 60,286 22,473 3660,857 261,871 - - - 2,22%

Ковариация между y и x рассчитывается по формуле , где , , . Дисперсия и среднее квадратическое отклонение для x и y находим по формулам:

= 2,479, = 26,490, 1,575, 5,147.

= -7,692 / 2,479 = -3,103; = 60,286 + 3,103 · 4,471 = 74,159

Получили уравнение регрессии: ŷ = 74,159 - 3,103·х (округлено до сотых).

Оцениваем качество полученной линейной модели:

а) TSS= 25624 - (31,3²) : 7 = 185,492; RSS = TSS - ESS= 185,429 - 18,38 = 176,051, где ESS= = 18,38 (в таблице №1); F - статистика = RSS · (n - m - 1) : ESS = 176,051 · ·5 :18,38 = 45,45.

Табличное значение на 1% уровне значимости равно 16,26 (см. таблицу распределения Фишера - Снедекора). Фактическое значение F - статистики больше табличного на 1% уровне значимости, следовательно уравнение регрессии в целом значимо и на 5% уровне значимости.

б) Средняя ошибка аппроксимации равна (ΣА)/7 = ((ΣIy-ŷI: y) · 100%) / 7 = 15,57 / 7 = =2,22%, что говорит о хорошей аппроксимации зависимости моделью (2,22% < 6%).

Вывод: модель получилась приемлемая (в смысле аппроксимации).

в) Коэффициент корреляции находим по формуле: = -0,949: сильная обратная линейная зависимость.

г) Коэффициент детерминации находим следующим образом: = 0,901 или вариация x определяет вариацию y на 90,1%.

Проверка на соответствие условиям теоремы Гаусса - Маркова

а) По таблице №2 рассчитаем статистику Дарбина - Уотсона:

Таблица №2

i e e i-1 (e i -e i-1

=16,050 : 18,38 = 0,8734.

1 6,75 2,60 - -
2 0,02 0,15 2,598 5,996
3 0,37 -0,61 0,149 0,576
4 5,94 -2,44 -0,610 3,342
5 2,71 -1,65 -2,438 0,628
6 0,15 0,39 -1,646 4,134
7 2,43 1,56 0,388 1,373
Итого: 18,38 - -1,559 16,050

Полученное значение попадает в область неопределённости: DW (0,7; 1,35). Это значит, что для прояснения вопроса относительно автокорреляции остатков необходимо дальнейшее исследование ряда остатков другими методами, в которых отсутствует зона неопределённости.

б) Воспользуемся тестом серий Бройша - Годфри:

Таблица №3

t e t e t-1 t-1 e t ·e t-1 ê t (y-bx) ²
1 2,598 0,149 0,022 0,387 0,074 6,371
2 0,149 -0,610 0,372 -0,091 -0,302 0,204
3 -0,610 -2,438 5,944 1,487 -1,208 0,358
4 -2,438 -1,646 2,709 4,013 -0,816 2,632
5 -1,646 0,388 0,151 -0,639 0,192 3,379
6 0,388 1,559 2,430 0,605 0,773 0,148
Итого: -1,559 -2,598 11,628 5,763 -1,287 13,092

На основании полученных данных построим уравнение регрессии без свободного члена вида ŷ=b·x. При этом стандартная ошибка коэффициента регрессии b , рассчитанная по формуле:

,

, = 1,181,

что меньше значения t табл. = 2,57. Это означает, что автокорреляция первого уровня отсутствует.

Однако следует отметить, что и тест Дарбина - Уотсона и тест серий Бройша - Годфри применяются только для выборок достаточно большого размера[1] , в то время как предложенная нам для анализа выборка состоит только лишь из семи значений.

в) При помощи критерия серий проверим случайность распределения уровней ряда остатков. С 95% вероятностью распределение ряда остатков считается случайным, если одновременно выполняются два неравенства:

1)

общее число серий должно быть больше двух, и 2) - максимальная длина серии должна быть строго меньше пяти.

Данные для расчётов получаем из таблицы № 4.

Таблица № 4. Критерий серий линейная модель не проходит:

ei ei - ei -1 серии

Число серий = 2, Продолжительность самой длинной серии

равна 3.

2 = = [2.079] = 2. (не выполняется),

хотя 3 < 5. Значит уровни распределены не случайно.

0,149 -2,449 +
-0,610 -0,759 +
-2,438 -1,828 +
-1,646 0,792 -
0,388 2,033 -
1,559 1,172 -

г) Соответствие ряда остатков нормальному закону распределения проверяем, используем RS-критерий:

= 2,63, где .

Значение нашего RS-критерия для 7 наблюдений практически попадает в интервал [2,67 3,69], (для 10 наблюдений) хотя и этот критерий определён для выборок более 10 единиц.

д) При помощи теста ранговой корреляции Спирмена определяем отсутствие или наличие гетероскедастичности.

Таблица № 5.

Ранг Х Х I ei I Ранг еi Di i

Коэффициент ранговой кореляции определяется по формуле:

1 2,5 2,60 7 -6 36
2 3 0,15 4 -2 4
3 3,4 0,61 3 0 0
4 4,1 2,44 1 3 9
5 5 1,65 2 3 9
6 6,3 0,39 5 1 1
7 7 1,56 6 1 1

Так как абсолютное значение статистики коэффициента ранговой корелляции =0,175 оказалась значительно меньше табличного значения , то гетероскедастичность отсутствует.

Вывод: линейная модель не соответствует всем предпосылкам регрессионного анализа (условиям теоремы Гаусса-Маркова) и, хотя она пригодна для прогнозирования, но возникает вопрос о её значимости.

Доверительные интервалы для параметра b регрессии

Стандартные ошибки для параметров регрессии находим по формулам:

= 0,46,

= 2,18.

Проверим на статистическую значимость коэффициент b модели, для чего рассчитаем t -статистику по формуле . Полученнаяt -статистика равна -6,742, что по модулю больше табличного значения t = 2,57. Экономически этот параметр интерпретируется так: при изменении дохода потребителей на одну единицу объёмы продаж изменятся на -3,103 ед.

Проверим на статистическую значимость коэффициент a модели, для чего рассчитаем t -статистику по формуле . Полученная t -статистика равна 33,992, что больше табличного значения t = 2,57. Доверительный интервал параметраb определяем по формуле:

;

s = = 1,917,

Доверительный интервал параметраb составляет ; или (t табл. = 2.57, Δ = 2,57 · 0,4602 = 1,1827).

Проведённый анализ коэффициентов регрессии говорит о том, что параметры регрессии значимы, кроме того и уравнение регрессии в целом значимо на 1% уровне значимости (cм. выше). Это позволяет использовать построенную нами модель для получения прогнозов.

Точечный и интервальный прогнозы

Вначале находим точечный прогноз для значения х , на 25% превышающего среднее значение = 4,47 ( т.е. при = 5,589), . Тогда стандартная ошибка прогноза составит:

,

t табл. = 2.57, Δ = 2,57 · 2,18 = 5,604.

Интервальный прогноз для точечного прогноза при = 5,589 () составит: или .


[1] Кристофер Доугерти. Введение в эконометрику. М.: Инфра М, 2001. С. 238.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений06:59:00 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
17:42:39 25 ноября 2015

Работы, похожие на Контрольная работа: Эконометрика

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150578)
Комментарии (1836)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru