Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Подобие фигур

Название: Подобие фигур
Раздел: Рефераты по математике
Тип: реферат Добавлен 04:18:32 27 мая 2009 Похожие работы
Просмотров: 4829 Комментариев: 2 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

РЕФЕРАТ

На тему: «Подобие фигур»

Выполнила:

ученица

Проверила:

Содержание

1. Преобразование подобия

2. Свойства преобразования подобия

3. Подобие фигур

4. Признак подобия треугольников по двум углам

5. Признак подобия треугольников по двум сторонам и углу между ними

6. Признак подобия треугольников по трем сторонам

7. Подобие прямоугольных треугольников

8. Углы, вписанные в окружность

9. Пропорциональность отрезков хорд и секущих окружности

10. Задачи на тему «Подобие фигур»


1. ПРЕОБРАЗОВАНИЕ ПОДОБИЯ

Преобразование фигуры Fв фигуру F'называется преобразованием подобия, если при этом преобразовании расстояния между точками изменяются в одно и то же число раз (рис. 1). Это значит, что если произвольные точки X, Yфигуры Fпри преобразовании подобия переходят в точки X', Y'фигуры F',то X'Y' = k-XY, причем число k— одно и то же для всех точек X, Y. Число kназывается коэффициентом подобия. При k = lпреобразование подобия, очевидно, является движением.

Рис.1

Пусть F — данная фигура и О — фиксированная точка (рис. 2). Проведем через произвольную точку X фигуры F луч ОХ и отложим на нем отрезок ОХ', равный k·OX, где k — положительное число. Преобразование фигуры F, при котором каждая ее точка X переходит в точку X', построенную указанным способом, называется гомотетией относительно центра О. Число k называется коэффициентом гомотетии, фигуры F и F' называются гомотетичными.


Теорема 1.Гомотетия есть преобразование подобия

Доказательство. Пусть О — центр гомотетии, k — коэффициент гомотетии, X и Y- две произвольные точки фигуры (рис.3)

Рис.3 Рис.4

При гомотетии точки X и Y переходят в точки X' и Y' на лучах ОХ и OY соответственно, причем OX' = k·OX, OY' = k·OY. Отсюда следуют векторные равенства ОХ' = kOX, OY' = kOY.

Вычитая эти равенства почленно, получим: OY'-OX' = k (OY- OX).

Так как OY' - OX'= X'Y', OY -OX=XY, то Х'Y' = kХY. Значит, /X'Y'/=k /XY/, т.e. X'Y' = kXY. Следовательно, гомотетия есть преобразование подобия. Теорема доказана.

Преобразование подобия широко применяется на практике при выполнении чертежей деталей машин, сооружений, планов местности и др. Эти изображения представляют собой подобные преобразования воображаемых изображений в натуральную величину. Коэффициент подобия при этом называется масштабом. Например, если участок местности изображается в масштабе 1:100, то это значит, что одному сантиметру на плане соответствует 1 м на местности.

Задача. На рисунке 4 изображен план усадьбы в масштабе 1:1000. Определите размеры усадьбы (длину и ширину).

Решение. Длина и ширина усадьбы на плане равны - 4 см и 2,7 см. Так как план выполнен в масштабе 1:1000, то размеры усадьбы равны соответственно 2,7 х1000 см = 27 м, 4х100 см = 40 м.

2. СВОЙСТВА ПРЕОБРАЗОВАНИЯ ПОДОБИЯ

Так же как и для движения, доказывается, что при преобразовании подобия три точки А, В, С, лежащие на одной прямой, переходят в три точки А1 , В1 , С1 , также лежащие на одной прямой. Причем если точка В лежит между точками А и С, то точка В1 лежит между точками А1 и С1 . Отсюда следует, что преобразование подобия переводит прямые в прямые, полупрямые в полупрямые, отрезки в отрезки.

Докажем, что преобразование подобия сохраняет углы между полупрямыми.

Рис. 5

Действительно, пусть угол ABC преобразованием подобия с коэффициентом k переводится в угол А1 В1 С1 (рис. 5). Подвергнем угол ABC преобразованию гомотетии относительно его вершины В с коэффициентом гомотетии k. При этом точки А и С перейдут в точки А2 и С2 . Треугольники А2 ВС2 и А1 В1 С1 равны по третьему признаку. Из равенства треугольников следует равенство углов А2 ВС2 и А1 В1 С1 . Значит, углы ABC и А1 В1 С1 равны, что и требовалось доказать.


3. ПОДОБИЕ ФИГУР

Две фигуры называются подобными, если они переводятся друг в друга преобразованием подобия. Для обозначения подобия фигур используется специальный значок: ∞. Запись F∞F' читается так: «Фигура F подобна фигуре F'».

Докажем, что если фигура F1 подобна фигуре F2 , а фигура F2 подобна фигуре F3 , то фигуры F1 и F3 подобны.

Пусть Х1 и Y1 — две произвольные точки фигуры F1 . Преобразование подобия, переводящее фигуру F1 в F2 , переводит эти точки в точки Х2 , Y2 , для которых X2 Y2 = k1 X1 Y1 .

Преобразование подобия, переводящее фигуру F2 в F3 , переводит точки Х2 , Y2 в точки Х3 , Y3 , для которых X3 Y3 = - k2 X2 Y2 .

Из равенств

X2 Y2= kX1 Y1, X3 Y3 = k2 X2 Y2

следует, что X3 Y3 - k1 k2 X1 Y1 . А это значит, что преобразование фигуры F1 в F3 , получающееся при последовательном выполнении двух преобразований подобия, есть подобие. Следовательно, фигуры F1 и F3 подобны, что и требовалось доказать.

В записи подобия треугольников: ΔABC∞ΔA1 B1 C1 — предполагается, что вершины, совмещаемые преобразованием подобия, стоят на соответствующих местах, т. е. А переходит в А1 , В - в B1 и С - в С1 .

Из свойств преобразования подобия следует, что у подобных фигур соответствующие углы равны, а соответствующие отрезки пропорциональны. В частности, у подобных треугольников ABC и А1 В1 С1

A=А1 , В=В1 , С=С1


4. ПРИЗНАК ПОДОБИЯ ТРЕУГОЛЬНИКОВ ПО ДВУМ УГЛАМ

Теорема 2. Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

Доказательство. Пусть у треугольников ABC и A1 B1 C1 А=А1 , B=B1 . Докажем, что ΔАВС~ΔА1 В1 С1 .

Пусть . Подвергнем треугольник А1 В1 С1 преобразованию подобия с коэффициентом подобия k, например гомотетии (рис. 6). При этом получим некоторый треугольник А2 В2 С2 , равный треугольнику ABC. Действительно, так как преобразование подобия сохраняет углы, то A2= А1 , B2 = B1 . А значит, у треугольников ABC и А2 В2 С2 A = A2 , B=B2 . Далее, A2 B2 = kA1 B1 =AB. Следовательно, треугольники ABC и А2 В2 С2 равны по второму признаку (по стороне и прилежащим к ней углам).

Так как треугольники А1 В1 С1 и А2 В2 С2 гомотетичны и, значит, подобны, а треугольники А2 В2 С2 и ABC равны и поэтому тоже подобны, то треугольники А1 В1 С1 и ABC подобны. Теорема доказана.

Рис. 7

Задача. Прямая, параллельная стороне АВ треугольника ABC, пересекает его сторону АС в точке А1 , а сторону ВС в точке В1 . Докажите, что Δ ABC ~ ΔА1 В1 С.

Решение (рис. 7). У треугольников ABC и А1 В1 С угол при вершине С общий, а углы СА1 В1 и CAB равны как соответствующие углы параллельных АВ и А1 В1 с секущей АС. Следовательно, ΔАВС~ΔА1 В1 С по двум углам.

5. ПРИЗНАК ПОДОБИЯ ТРЕУГОЛЬНИКОВ ПО ДВУМ СТОРОНАМ И УГЛУ МЕЖДУ НИМИ

Теорема 3.Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.

Доказательство (аналогично доказательству теоремы 2). Пусть у треугольников ABC и A1 B1 C1 C=C1 и АС=kА1 С1 , ВС=kВ1 С1 . Докажем, что ΔАВС~ΔА1 В1 С1 .

Подвергнем треугольник A1 B1 C1 преобразованию подобия с коэффициентом подобия k, например гомотетии (рис. 8).

При этом получим некоторый треугольник А2 В2 С2 , равный треугольнику ABC. Действительно, так как преобразование подобия сохраняет углы, то С2 = =С1 . А значит, у треугольников ABC и А2 В2 С2 C=C2 . Далее, A2 C2 = kA1 C1 =AC, B2 C2 = kB1 C1 =BC. Следовательно, треугольники ABC и А2 В2 С2 равны по первому признаку (по двум сторонам и углу между ними).

Так как треугольники A1 B1 C1 и А2 В2 С2 гомотетичны и, значит, подобны, а треугольники А2 В2 С2 и ABC равны и поэтому тоже подобны, то треугольники А1 В1 С1 и ABC подобны. Теорема доказана.

Рис. 9

Задача . В треугольнике ABC с острым углом С проведены высоты АЕ и BD (рис. 9). Докажите, что ΔABC~ΔEDC.

Решение. У треугольников ABC и EDC угол при вершине С общий. Докажем пропорциональность сторон треугольников, прилежащих к этому углу. Имеем ЕС=AC cos γ, DC = ВС соsγ. То есть стороны, прилежащие к углу С, у треугольников пропорциональны. Значит, ΔАВС~ΔEDC по двум сторонам и углу между ними.

6. ПРИЗНАК ПОДОБИЯ ТРЕУГОЛЬНИКОВ ПО ТРЕМ СТОРОНАМ

Теорема 4.Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.

Доказательство (аналогично доказательству теоремы 2). Пусть у треугольников ABC и А1 В1 С1 AB = kA1 B1 , AC = kA1 C1 , BC = kB1 C1 . Докажем, что ΔАВС~ΔА1 В1 С1 .

Подвергнем треугольник А1 В1 С1 преобразованию подобия с коэффициентом подобия k, например гомотетии (рис. 10). При этом получим некоторый треугольник А2 В2 С2 , равный треугольнику ABC. Действительно, у треугольников соответствующие стороны равны:

A2 В2 = kA1 В1 = АВ, A2 C2 = kA1 C1 =AC, B2 C2 = kB1 C1 =BC.

Следовательно, треугольники равны по третьему признаку (по трем сторонам).

Так как треугольники А1 В1 С1 и А2 В2 С2 гомотетичны и, значит, подобны, а треугольники A2 В2 C2 и ABC равны и поэтому тоже подобны, то треугольники А1 В1 С1 и ABC подобны. Теорема доказана.

Рис. 10

Задача. Докажите, что у подобных треугольников периметры относятся как соответствующие стороны.

Решение. Пусть ABC и А1 В1 С1 — подобные треугольники. Тогда стороны треугольника А1 В1 С1 пропорциональны сторонам треугольника ABC, т. е. А1 В1 =kAB, B1 C1 = kBC, A1 C1 =kAC. Складывая эти равенства почленно, получим:

A1 B1 + B1 C1 +A1 C1 =k(AB+BC+AC).

Отсюда

т. е. периметры треугольников относятся как соответствующие стороны.

7. ПОДОБИЕ ПРЯМОУГОЛЬНЫХ ТРЕУГОЛЬНИКОВ

У прямоугольного треугольника один угол прямой. Поэтому по теореме 2 для подобия двух прямоугольных треугольников достаточно, чтобы у них было по равному острому углу.

С помощью этого признака подобия прямоугольных треугольников докажем некоторые соотношения в треугольниках.

Пусть ABC — прямоугольный треугольник с прямым углом С. Проведем высоту CD из вершины прямого угла (рис. 11).

Треугольники ABC и CBD имеют общий угол при вершине В. Следовательно, они подобны: ΔABC~ΔCBD. Из подобия треугольников следует пропорциональность соответствующих сторон:

Это соотношение обычно формулируют так: катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.

Прямоугольные треугольники ACD и CBD также подобны. У них равны острые углы при вершинах А и С. Из подобия этих треугольников следует пропорциональность их сторон:

Это соотношение обычно формулируют так: высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между проекциями катетов I на гипотенузу.

Докажем следующее свойство биссектрисы треугольника: биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам.

Пусть CD — биссектриса треугольника ABC (рис. 12). Если треугольник ABC равнобедренный с основанием АВ, то указанное свойство биссектрисы очевидно, так как в этом случае биссектриса CD является и медианой.

Рассмотрим общий случай, когда АС≠ВС. Опустим перпендикуляры AF и BE из вершин А и В на прямую CD.

Прямоугольные треугольники ACF и ВСЕ подобны, так как у них равны острые углы при вершине С. Из подобия треугольников следует пропорциональность сторон:

Прямоугольные треугольники ADF и BDE тоже подобны. У них углы при вершине D равны как вертикальные. Из подобия треугольников следует пропорциональность сторон:

Сравнивая это равенство с предыдущим, получим:

т. е. отрезки AD и BD пропорциональны сторонам АС и ВС, что и требовалось доказать.

8. УГЛЫ, ВПИСАННЫЕ В ОКРУЖНОСТЬ

Угол разбивает плоскость на две части. Каждая из частей называется плоским углом. На рисунке 13 заштрихован один из плоских углов со сторонами а и Ь. Плоские углы с общими сторонами называются дополнительными.

Если плоский угол является частью полуплоскости, то его градусной мерой называется градусная мера обычного угла с теми же сторонами. Если плоский угол содержит полуплоскость, то его градусная мера принимается равной 360° - α, где α - градусная мера дополнительного плоского угла (рис. 14).

Рис. 13 Рис.14

Центральным углом в окружности называется плоский угол с вершиной в ее центре. Часть окружности, расположенная внутри плоского угла, называется дугой окружности, соответствующей этому центральному углу (рис. 15). Градусной мерой дуги окружности называется градусная мера соответствующего центрального угла.

Рис. 15 Рис. 16

Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным в окружность. Угол ВАС на рисунке 16 вписан в окружность. Его вершина А лежит на окружности, а стороны пересекают окружность в точках В и С. Говорят также, что угол А опирается на хорду ВС. Прямая ВС разбивает окружность на две дуги. Центральный угол, соответствующий той из этих дуг, которая не содержит точку А, называется центральным углом, соответствующим данному вписанному углу.

Теорема 5. Угол, вписанный в окружность, равен половине соответствующего центрального угла.

Доказательство. Рассмотрим сначала частный случай, когда одна из сторон угла проходит через центр окружности (рис. 17, а). Треугольник АОВ равнобедренный, так как у него стороны OA и ОВ равны как радиусы. Поэтому углы A и В треугольника равны. А так как их сумма равна внешнему углу треугольника при вершине О, то угол В треугольника равен половине угла АОС, что и требовалось доказать.

Рис. 17

Общий случай сводится к рассмотренному частному случаю проведением вспомогательного диаметра BD (рис. 17, б, в). В случае, представленном на рисунке 17, б, АВС= CBD+ ABD= ½ COD + ½ АОD= ½ АОС.

В случае, представленном на рисунке 17, в,

ABC= CBD - ABD = ½ COD - ½ AOD = ½ AOC.

Теорема доказана полностью.

Из теоремы 5 следует, что вписанные углы, стороны которых проходят через точки А и В окружности, а вершины лежат по одну сторону от прямой АВ, равны (рис. 18). В частности, углы, опирающиеся на диаметр, прямые.

9. ПРОПОРЦИОНАЛЬНОСТЬ ОТРЕЗКОВ ХОРД И СЕКУЩИХ ОКРУЖНОСТИ

Если хорды АВ и CD окружности пересекаются в точке S

ТоAS·BS=CS·DS.

Докажем сначала, что треугольники ASD и CSB подобны (рис. 19). Вписанные углы DCB и DAB равны по следствию из теоремы 5. Углы ASD и BSC равны как вертикальные. Из равенства указанных углов следует, что треугольники ASZ и CSB подобны.

Из подобия треугольников следует пропорция

Отсюда

AS·BS = CS·DS, что и требовалось доказать

Рис.19 Рис.20

Если из точки Р к окружности проведены две секущие, пересекающие окружность в точках А, В и С, D соответственно, то

AP·BP=CP·DP.

Пусть точки А и С — ближайшие к точке Р точки пересечения секущих с окружностью (рис. 20). Треугольники PAD и РСВ подобны. У них угол при вершине Р общий, а углы при вершинах В и D равны по свойству углов, вписанных в окружность. Из подобия треугольников следует пропорция

Отсюда PA·PB=PC·PD, что и требовалось доказать.

10. Задачи на тему «Подобие фигур»

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:22:39 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
16:49:58 25 ноября 2015

Работы, похожие на Реферат: Подобие фигур
Шпаргалки по геометрии, алгебре, педагогике, методике математики (ИГПИ ...
Кольцом называется числ. множ. На котором выполняются три опер-ии: слож, умнож, вычит. Полем наз. Числ множ. На котором выполняются 4 операции: слож ...
Взаимное расположение фигур, изображение фигур на плоскости, равенство и подобие фигур, геом преобразования, измерения и геом построения, координатный и векторный метод решения ...
Рассматриваются свойства подобия: преобразование подобия переводит прямые в прямые, полупрямые в полупрямые, отрезки в отрезки, при преобразовании подобия сохраняются углы между ...
Раздел: Рефераты по математике
Тип: реферат Просмотров: 3490 Комментариев: 3 Похожие работы
Оценило: 3 человек Средний балл: 3 Оценка: неизвестно     Скачать
Оценка периметра многоугольника заданного диаметра
Дипломная работа По теме: "Оценка периметра многоугольника заданного диаметра" Оглавление Введение Глава 1. Общие сведения о задачах на экстремум ...
Докажите также, что описанная окружность плоской фигуры Ф обязательно содержит или две граничные точки Ф, являющиеся диаметрально противоположными точками окружности, или же три ...
Если же описанная окружность S фигуры Ф содержит три точки Ф, являющиеся вершинами остроугольного треугольника АВС, то по крайней мере один из углов а этого остроугольного ...
Раздел: Рефераты по математике
Тип: дипломная работа Просмотров: 7361 Комментариев: 1 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Геометрия Лобачевского
Тема: "Геометрия Лобачевского" Выполнила: Зайнулина Г. Г.Бишкек 2010 Н.И. Лобачевский и его геометрия До начала XIX столетия ни одна из попыток ...
Теоремы о равнобедренных треугольниках, три признака равенства треугольников, теорема о внешнем угле треугольника, теоремы о соотношениях между сторонами и углами, теоремы о ...
Заметим, что если hk = h'k', то всегда найдется такое -преобразование f', что h' = f'(h), k' = f'(k). В самом деле, допустим, что равенство hk = h'k' означает существование такого ...
Раздел: Рефераты по математике
Тип: реферат Просмотров: 5760 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Методические особенности изучения темы "Подобные треугольники ...
... Государственный Педагогический Университет Факультет Математики и Информатики Методические особенности изучения темы "Подобные треугольники" в средней
Подобием называется преобразование, при котором расстояния изменяются в одном и том же отношении, т.е. умножается на одно и тоже число, называемое коэффициентом подобия", "Подобием ...
В частности решаются задачи на построение четвёртого пропорционального отрезка, квадрата, расположенного в прямоугольном треугольнике, так, что три его вершины лежат на катетах, а ...
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 8864 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Проблемное обучение
Введение. Вся жизнь человека постоянно ставит перед ним острые и неотложные задачи и проблемы. Возникновение таких проблем, трудностей, неожиданностей ...
Например, учащийся, только что доказавший теорему о сумме внутренних углов треугольника на чертеже с остроугольным треугольником, нередко оказывается не в состоянии провести то же ...
Показать что во всяком прямоугольном треугольнике сумма диаметров описанной окружности и вписанной окружностей равна сумме его катетов.
Раздел: Рефераты по педагогике
Тип: реферат Просмотров: 11900 Комментариев: 11 Похожие работы
Оценило: 25 человек Средний балл: 4.1 Оценка: 4     Скачать
Решение задач на экстремум
Содержание Введение Глава 1. Методы решения задач на экстремумы §1.История развития задач на экстремумы. §2.Способы решения задач на экстремумы. 2.1 ...
1)Обозначим длину медианы АК = х (рис.8). Пусть х = та (определенное число) и решим задачу: построить треугольник ABC по данному углу А = ѭ, противолежащей стороне а и медиане та
Решим следующую задачу: построить прямую, проходящую через вершину А треугольника ABC, так, чтобы сумма расстояний до нее от вершин В и С была наибольшей.
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 8004 Комментариев: 3 Похожие работы
Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать
Методы решения задач на построение
Введение Вся история геометрии и некоторых других разделов математики тесно связана с развитием теории геометрических построений. Важнейшие аксиомы ...
Например, в качестве основных построений можно рассмотреть следующие задачи: деление данного угла пополам; построение отрезка, равного данному; построение угла, равного данному ...
Если какая-нибудь точка данной фигуры представляла, например, вершину какого-нибудь угла, то в обратной фигуре она представит, вообще, точку пересечения окружностей, пересекающихся ...
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 2821 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Графические работы на уроках стереометрии в средней школе
Оглавление Введение. 3 Глава 1. Проявление пространственного мышления в учебной деятельности. 5 1.1. Модель формирования пространственного образа. 7 1 ...
Серия задач содержит задания на перевод словесных данных задачи в графический образ; выделение существенных признаков геометрических понятий; вычленение фигуры из состава чертежа ...
Треугольник АВС лежит в плоскости ѭ. Через его вершины проведены параллельные прямые, не лежащие в плоскости ѭ. На них отложены равные отрезки АА1, ВВ1 и СС1 по одну сторону от ѭ ...
Раздел: Рефераты по педагогике
Тип: курсовая работа Просмотров: 2455 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Аффинные преобразования
Глава I.Понятие о геометрическом преобразовании 1.1 Что такое геометрическое преобразование? Осевая симметрия, центральная симметрия, поворот ...
4)Уравнения аффинного преобразования получаются из основной теоремы и формул преобразования аффинных координат точно так же, как и уравнения движения и подобия.
Пусть на чертеже 10 имеем два соответственных треугольника ABC и А'В'С'. Рассмотрим один из этих треугольников, например ABC.
Раздел: Рефераты по математике
Тип: курсовая работа Просмотров: 3634 Комментариев: 2 Похожие работы
Оценило: 2 человек Средний балл: 3.5 Оценка: неизвестно     Скачать

Все работы, похожие на Реферат: Подобие фигур (7021)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150311)
Комментарии (1830)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru