Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Методы преобразования комплексного чертежа

Название: Методы преобразования комплексного чертежа
Раздел: Рефераты по математике
Тип: реферат Добавлен 09:29:47 21 октября 2010 Похожие работы
Просмотров: 979 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

План

1. Общие сведения.

2. Замена плоскостей проекций.

3. Вращение вокруг оси, перпендикулярной плоскости проекций.

4. Плоскопараллельное движение.

1. Общие сведения

Проецируемая фигура может занимать по отношению к плоскости проекции удобное (рациональное) и неудобное (нерациональное) положение.

Количество и характер геометрических построений при графическом решении задач определяется не только сложностью самой задачи, но и зависят от рационального или нерационального расположения фигуры относительно плоскости проекций.

Наиболее рациональные частные положения фигуры:

- положение, перпендикулярное к плоскости проекций;

- положение параллельное плоскости проекций.

При общем положении фигуры, она проецируется на плоскость проекций в искаженном виде.

Методы преобразования комплексного чертежа применяются для приведения фигуры общего положения в частное положение, наиболее выгодное для решения задач.

Четыре основные задачи, решаемые методами преобразования

1. Прямую общего положения преобразовать в прямую уровня.

2. Прямую общего положения преобразовать в проецирующую прямую.

3. Плоскость общего положения преобразовать в проецирующую плоскость.

4. Плоскость общего положения преобразовать в плоскость уровня.

Достигается это:

а) введением дополнительных плоскостей проекций так, чтобы прямая линия или плоская фигура, не меняя своего положения в пространстве, оказалась в частном положении в новой системе плоскостей проекций (способ перемены плоскостей проекций);

б) изменением положения прямой линии или какой-либо фигуры путем поворота вокруг некоторой оси так, чтобы прямая или фигура оказалась в частном положении относительно неизменной системы плоскостей проекций (способ вращения и плоскопараллельного перемещения).

2. Замена плоскостей проекций

Сущность способа замены плоскостей проекций заключается в том, что при неизменном положении объекта в пространстве производится замена данной системы плоскостей проекций новой системой взаимно перпендикулярных плоскостей проекций (рис. 75).

При переходе к новой системе одну из плоскостей проекций заменяют новой таким образом, чтобы данный геометрический элемент (прямая, плоскость) занял частное положение и проецировался без искажения.

Рис. 75

При решении ряда задач, например, требуется преобразовать прямую общего положения в прямую уровня, а затем — в проецирующую, выполнив при этом последовательно два преобразования.

Рассмотрим ход решения задач.

РЕШЕНИЕ I ОСНОВНОЙ ЗАДАЧИ. Для того, чтобы прямая АВ стала линией уровня (рис. 76, а), следует ввести новую плоскость проекций и расположить ее параллельно данной прямой. При этом новая ось x 1 будет параллельна одной из проекций прямой. Проведем ось параллельно горизонтальной проекции АВ . Новая плоскость проекций V1 расположится параллельно прямой АВ , которая проецируется на эту плоскость в истинную величину* .

Правило: при замене плоскостей проекций расстояние от новой проекции точки до новой оси равно расстоянию от заменяемой проекции точки до старой оси проекций.

Рис. 76

;

;

Иными словами, высоты (аппликаты) концов отрезка в новой системе плоскостей проекций останутся прежними. В результате этой замены решена задача на определение действительной величины отрезка и угла наклона  к плоскости H. На чертеже плоскость V1 совмещают с плоскостью H.

РЕШЕНИЕ II ОСНОВНОЙ ЗАДАЧИ. Для того, чтобы прямая АВ оказалась проецирующей (рис. 76,б), т.е. изобразилась точкой, необходимо решить I основную задачу, а затем произвести вторую замену плоскости проекций и расположить новую плоскость H1 перпендикулярно прямой. Новую ось x 2 располагаем перпендикулярно новой фронтальной проекции прямой А ²1 В ²1 . На новой плоскости проекций Н1 прямая изобразится точкой, так как координаты концов отрезка в системе Н/V1 одинаковы.

Таким образом, прямая АВ в системе H1 /V1 стала проецирующей относительно плоскости H1 . Преобразования в этой задаче могли быть выполнены и в другой последовательности: сначала могла быть заменена горизонтальная плоскость проекций, а затем — фронтальная.

Рассмотрим еще одну задачу — требуется определить истинную величину плоской фигуры — треугольника АВС , занимающего в пространстве общее положение. Для решения этой задачи необходимо преобразовать чертеж (эпюр) так, чтобы плоскость общего положения стала параллельной одной из плоскостей проекций новой системы* .

РЕШЕНИЕ III ОСНОВНОЙ ЗАДАЧИ. Сначала заменим фронтальную плоскость проекций новой плоскостью V1 , перпендикулярной плоскости треугольника. Это условие выполнено с помощью вспомогательной прямой — линии уровня (горизонталь AN ) (рис. 77). Новая ось x 1 проводится перпендикулярно горизонтальной проекции горизонтали. На новой плоскости проекций V1 горизонталь спроецировалась в точку, а плоскость треугольника — в линию. Угол  определяет угол наклона треугольника к горизонтальной плоскости H.

Рис. 77

;

;

РЕШЕНИЕ IV ОСНОВНОЙ ЗАДАЧИ. Для решения задачи новая плоскость проекций должна быть параллельна заданной плоскости. Производим две последовательные перемены. При первой перемене располагаем новую плоскость проекций перпендикулярно к прямой уровня заданной плоскости общего положения, т.е. решаем третью основную задачу – преобразуем плоскость общего положения в проецирующую. При второй перемене новую плоскость проекций H1 устанавливаем параллельно треугольнику. Новую ось x 2 проводим параллельно новой фронтальной проекции треугольника — прямой B ²1 A ²1 C ²1 . Построенная проекция определяет истинную величину и форму треугольника.


* Новая ось x 1 и плоскость проекции V1 могут быть расположены на любом расстоянии от прямой, они могут совпадать с прямой и ее проекцией

* Сначала следует преобразовать плоскость общего положения в проецирующую, а затем — в плоскость уровня.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:22:25 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
16:49:51 25 ноября 2015

Работы, похожие на Реферат: Методы преобразования комплексного чертежа

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151047)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru