Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Курсовая работа: Теория вероятности и математическая статистика

Название: Теория вероятности и математическая статистика
Раздел: Рефераты по математике
Тип: курсовая работа Добавлен 16:00:02 05 июня 2010 Похожие работы
Просмотров: 120 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Московский авиационный институт

/государственный университет/

Филиал «Взлет»

Курсовая работа

Теория вероятности и математическая статистика


Содержание

Задание №1: Проверка теоремы Бернулли на примере моделирования электросхемы

Задание №2: Смоделируем случайную величину, имеющую закон распределения модуля случайной величины, распределенной по нормальному закону

Задание №3: Проверка критерием Х2 : имеет ли данный массив соответствующий закон распределения

Список используемой литературы


Задание №1: Проверка теоремы Бернулли на примере моделирования электросхемы

Теорема Я. Бернулли: при увеличении количества опытов, частота появлений событий сходится по вероятности к вероятности этого события.

План проверки: Составить электросхему из последовательно и параллельно соединенных 7 элементов, рассчитать надежность схемы, если надежность каждого элемента: 0.6 < pi< 0.9. Расчет надежности схемы провести двумя способами. Составить программу в TurboPascal, при помощи которой мы будем проводить опыты, учитывая, что надежность каждого из элементов в пределах от 0.6 до 0.9. Высчитывать частоту безотказной работы схемы. Для этого мы вводим надежность каждого из элементов. Программа будет увеличивать число опытов от 1000 до 20000 через 1000 проверяя сколько из этих опытов окажутся успешными, т.е. схема работает, для этого проверяется условие когда x[i]<P[i] то присваиваем этому элементу логическую 1 т.е. элемент работает, а если условие не выполняется то элемент не работает, всё это проделывается для каждого из 7 элементов для этого данное условие задаётся при помощи цикла. Далее получаем количество успешных опытов и делим на количество проведённых получая при этом частоту безотказной работы данной схемы.

Схема:

Электрическая цепь, используемая для проверки теоремы Бернулли


Расчет:

Чтобы доказать выполнимость теоремы Бернулли, необходимо чтобы значение частоты появления события в серии опытов в математическом моделировании равнялось значению вероятности работы цепи при теоретическом расчёте этой вероятности.

Математическое моделирование с помощью TurboPascal.

Program TVMS_kursov_1;

Uses CRT;

Var i,b,k,d,op,n:Integer;

ch:Real;

P,x:Array[1..10] of Real;

a:Array[1..30] of Integer;

Begin

ClrScr;

Randomize;

For i:=1 to 7 do

begin

Write(' Введите надёжности элементов P[',i,']=');

ReadLn(P[i]);

End;

WriteLn;

WriteLn('Число опытов ','Число благоприятных исходов ','Частота');

For op:=1 to 20 do

begin

n:=op*1000;

d:=0;

For k:=1 to n do

begin

For i:=1 to 7 do

begin

x[i]:=Random;

If x[i]<P[i] then a[i]:=1 else a[i]:=0;

End;

b:=((a[3]+a[4]+a[5]*a[6]*a[7])*a[1]*a[2]);

if b>=1 then d:=d+1;

End;

ch:=d/n;

WriteLn;

Write(' ':3,n:5,' ':20,d:5,' ':15,ch:5:4);

End;

WriteLn;

ReadLn;

End.

Результат работы программы.

Введите надёжности элементов P[1]=0.7

Введите надёжности элементов P[2]=0.9

Введите надёжности элементов P[3]=0.8

Введите надёжности элементов P[4]=0.6

Введите надёжности элементов P[5]=0.9

Введите надёжности элементов P[6]=0.7

Введите надёжности элементов P[7]=0.8


Таблица

Числоопытов Числоблагоприятныхисходов Частота

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000

19000

20000

618

1225

1808

2478

3022

3592

4182

4847

5432

6070

6643

7252

7876

8574

9030

9769

10281

11006

11520

11997

0.6180

0.6125

0.6027

0.6195

0.6044

0.5987

0.5974

0.6059

0.6036

0.6070

0.6039

0.6043

0.6058

0.6124

0.6020

0.6106

0.6048

0.6114

0.6063

0.5998

Теоретический расчёт вероятности работы цепи:

I способ:

II способ:

Из математического моделирования с помощью TurboPascal видно, что частота появления события в серии опытов сходится по вероятности к рассчитанной теоретически вероятности данного события .

Распределение модуля случайной величины, распределенной по нормальному закону

Пусть СВ Y подчиняется закону нормального распределения. Пусть по тем или иным причинам представляет интерес величина отклонения Y от нуля независимо от знака этого отклонения, т. е. СВ

X=|Y|

которая образует распределение модуля СВ, подчиненной нормальному закону.

Математическое выражение. Распределение модуля СВ определяется теми же двумя параметрами, которые характеризуют исходное нормальное распределение.

Плотность вероятности равна

где x0 , σн — математическое ожидание и среднее квадратическое отклонение исходного нормального распределения;

φ(t) — функция, определяемая равенством (5.12).


Функция распределения равна

где Ф0 (t) — функция, определяемая равенством (5.19).

График плотности вероятности приведен на рис. 5.2.

Математическое ожидание, дисперсия и среднее квадратическое отклонение СВ Х определяются равенствами:


Вид распределения модуля случайной величины, распределенной по нормальному закону, зависит от соотношения между x0 и σн (рис. 5.2).

Для определения медианы нужно решить уравнение

а для определения моды — уравнение

Второе уравнение при x0 > σн , а первое при любых x0 и σн решаются численными или графическими методами. При x0н мода равна нулю.

Формулы (5.33) и (5.34) можно выразить через срединное отклонение Ен исходного нормального распределения, заменив в них σн на Ен , φ(t) на φ^ (t), Ф0 (t) на Ф^ 0 (t). Функции φ^ (t) и Ф^ 0 (t) определяются равенствами (5.13) и (5.21).

Вычисление: Расчеты по формулам (5.33) — (5.37) производятся с помощью табл. II и III. Если расчетчик предпочитает выражение исходного нормального распределения через срединное отклонение, то используются табл. IV и V.

Задание №2: Смоделируем случайную величину, имеющую закон распределения модуля случайной величины, распределенной по нормальному закону

Программав Turbo Pascal:

PROGRAM Kursov_2;

Uses Graph,Crt;

Var mi:array[1..100] of integer;

hi,pix,hn,hr,xi:array[1..200] of real;

m,i,l,j,n,a,b:integer;

mx,Dx,Gx,Sk,Ex,fx,xl,Dxs,Gxs,Sks,Exs:real;

xmin,xmax,pod,c,c1,c2,x,v:real;

st:string;

{---------------Генерирование числовых последовательностей-----------}

BEGIN

Randomize;

ClrScr;

Write(' Введите количество элементов последовательности: ' );

ReadLn(n);

a:=-3; b:=6;

WriteLn;

WriteLn(' Исходная последовательность с нормальным ');

WriteLn(' законом распределения на интервале [-3;6]:');

mx:=(a+b)/2;

Dx:=30/12;

for i:=1 to n do

begin

v:=0;

for j:=1 to 30 do

begin

x:=Random;

v:=v+x;

end;

v:=(v-15)/Sqrt(Dx)*1.5+mx;

hn[i]:=v;

Write(hn[i]:10:2);

end;

WriteLn;

ReadLn; ClrScr;

{-------------Минимальное и максимальное значения диапазона----------}

xmin:=hn[1]; xmax:=hn[1];

for i:=1 to n do

begin

if hn[i]>xmax then

xmax:=hn[i];

if hn[i]<xmin then

xmin:=hn[i];

end;

WriteLn;

WriteLn(' Максимальное значение:',xmax:6:2);

WriteLn(' Минимальное значение: ',xmin:6:2);

ReadLn; ClrScr;

{--Генерирование модyля CB с нормальным законом распределения--}

a:=0; b:=6;

WriteLn(' последовательность модyля CB с нормальным ');

WriteLn(' законом распределения:');

WriteLn;

for i:=1 to n do

begin

hr[i]:=abs(hn[i]);

Write(hr[i]:10:2);

end;

WriteLn;

ReadLn; ClrScr;

{-------------Минимальное и максимальное значения диапазона----------}

xmin:=hr[1]; xmax:=hr[1];

for i:=1 to n do

begin

if hr[i]>xmax then

xmax:=hr[i];

if hr[i]<xmin then

xmin:=hr[i];

end;

WriteLn;

WriteLn(' Максимальное значение:',xmax:6:2);

WriteLn(' Минимальное значение: ',xmin:6:2);

ReadLn; ClrScr;

{------------------------Разбивка на интервалы-----------------------}

m:=b-a;

c:=(xmax-xmin)/m;

c1:=xmin; c2:=c+xmin;

for i:=1 to m do

begin

xi[i]:=(c1+c2)/2;

mi[i]:=0; l:=1;

repeat

if (hn[l]<=c2) and (hn[l]>=c1) then

mi[i]:=mi[i]+1;

l:=l+1;

until l=n+1;

c1:=c2;

c2:=c2+c;

end;

GotoXY(1,8);

WriteLn('KоличествочиселЧacтoтa пoпaдaния Bыcoтa cтoлбикa гиcтoгpaммы');

WriteLn;

for i:=1 to m do

begin

pix[i]:=mi[i]/n;

hi[i]:=pix[i]/c;

WriteLn(i,': ',mi[i]:6,pix[i]:20:3,hi[i]:22:3);

end;

ReadLn; ClrScr;

{----------------------Числовые характеристики-----------------------}

xl:=0;

for i:=1 to m do

xl:=xl+xi[i]*pix[i];

Dxs:=0;

for i:=1 to m do

Dxs:=Dxs+sqr(xi[i]-xl)*pix[i];

Gxs:=sqrt(Dxs); Sks:=0; Exs:=0;

for i:=1 to m do

begin

pod:=xi[i]-xl;

Sks:=Sks+pod*pod*pod*pix[i]/(Gxs*Gxs*Gxs);

Exs:=Exs+pod*pod*pod*pod*pix[i]/(Gxs*Gxs*Gxs*Gxs);

end;

Exs:=Exs-3;

GotoXY(10,1);

WriteLn(' Числовые характеристики:');

GotoXY(10,5);

WriteLn('Среднестатистическое значение xl= ',xl:6:3);

GotoXY(10,8);

WriteLn('Статистическая дисперсия Dxs= ',Dxs:6:3);

GotoXY(10,11);

WriteLn('Среднестатистическое отклонение Gxs= ',Gxs:6:3);

GotoXY(10,14);

WriteLn('Скошенность Sks= ',Sks:6:3);

GotoXY(10,17);

WriteLn('Островершинность Exs= ',Exs:6:3);

ReadLn;

END.

Результат работы программы:

Введите количество элементов последовательности: 300

Исходная последовательность с нормальным

законом распределения на интервале [-3;6]:

2.79 1.48 -0.18 2.84 -0.51 1.90 0.83 0.84

-1.50 0.43 3.67 1.30 2.61 1.22 -1.24 -0.49

2.14 -0.16 -2.01 4.72 3.08 1.14 0.84 0.24

-0.63 2.18 1.38 2.30 0.42 3.69 1.99 0.38

-1.14 0.77 1.68 -0.70 3.02 2.26 1.50 1.50

0.19 -0.19 1.61 1.92 2.63 0.76 1.28 1.90

4.41 -0.64 0.88 2.30 1.07 0.39 3.11 3.44

0.84 2.05 0.07 -0.56 1.77 0.77 1.21 2.08

-0.53 -0.03 0.78 -0.64 1.40 0.93 0.32 0.42

2.62 2.26 4.79 1.95 1.31 2.36 1.66 2.06

2.20 1.08 0.90 2.95 2.97 3.36 1.08 3.21

2.61 4.01 5.84 1.67 -0.49 2.06 0.64 2.29

-0.02 3.78 3.66 1.13 1.46 4.10 2.95 1.94

0.31 2.14 1.84 -0.40 0.84 1.89 1.88 3.47

2.51 -0.50 1.05 2.15 2.54 1.27 1.61 0.32

2.33 4.57 2.84 4.60 1.74 0.81 -1.28 -0.98

-1.84 -0.64 2.18 2.20 1.01 2.29 0.35 1.35

3.48 3.82 -0.07 1.14 1.99 -0.52 4.42 -0.34

1.43 -0.90 1.96 -1.30 -0.26 1.04 3.47 3.58

-0.95 1.68 -0.60 4.30 -0.96 1.19 1.94 1.23

0.76 1.84 0.05 0.69 1.18 1.68 1.04 1.07

2.87 1.66 0.96 2.88 4.11 0.49 0.82 1.71

-0.67 0.06 -0.98 3.26 2.56 1.49 3.09 1.43

1.77 2.30 2.44 2.06 3.33 0.26 0.19 4.09

2.69 -0.69 3.35 1.78 3.56 4.19 0.71 1.15

1.10 0.03 1.67 3.50 -1.51 3.16 0.18 -1.62

0.81 3.05 3.31 3.25 4.32 0.02 -2.65 0.79

0.07 1.51 1.30 2.49 -1.45 2.18 -0.03 3.27

1.21 -1.62 2.49 0.72 3.60 0.83 -0.67 2.11

3.15 1.83 3.02 0.27 0.61 6.20 -1.20 0.76

-1.34 0.68 -0.22 1.73 0.67 1.17 0.69 0.51

2.01 3.43 0.05 0.25 1.35 2.10 -0.29 -0.35

-0.22 2.33 1.67 2.72 3.85 0.15 1.16 2.09

2.14 1.93 -1.11 2.30 -1.10 1.21 2.00 -0.48

0.34 0.25 2.35 1.31 0.11 3.29 3.36 2.78

1.91 4.10 2.28 0.89 3.27 3.25 3.06 0.25

3.25 -0.28 0.80 0.17 0.69 2.63 2.36 3.52

Максимальное значение: 6.20

Минимальное значение: -2.65

Последовательность модуля CB с нормальным

законом распределения

2.79 1.48 0.18 2.84 0.51 1.90 0.83 0.84

1.50 0.43 3.67 1.30 2.61 1.22 1.24 0.49

2.14 0.16 2.01 4.72 3.08 1.14 0.84 0.24

0.63 2.18 1.38 2.30 0.42 3.69 1.99 0.38

1.14 0.77 1.68 0.70 3.02 2.26 1.50 1.50

0.19 0.19 1.61 1.92 2.63 0.76 1.28 1.90

4.41 0.64 0.88 2.30 1.07 0.39 3.11 3.44

0.84 2.05 0.07 0.56 1.77 0.77 1.21 2.08

0.53 0.03 0.78 0.64 1.40 0.93 0.32 0.42

2.62 2.26 4.79 1.95 1.31 2.36 1.66 2.06

2.20 1.08 0.90 2.95 2.97 3.36 1.08 3.21

2.61 4.01 5.84 1.67 0.49 2.06 0.64 2.29

0.02 3.78 3.66 1.13 1.46 4.10 2.95 1.94

0.31 2.14 1.84 0.40 0.84 1.89 1.88 3.47

2.51 0.50 1.05 2.15 2.54 1.27 1.61 0.32

2.33 4.57 2.84 4.60 1.74 0.81 1.28 0.98

1.84 0.64 2.18 2.20 1.01 2.29 0.35 1.35

3.48 3.82 0.07 1.14 1.99 0.52 4.42 0.34

1.43 0.90 1.96 1.30 0.26 1.04 3.47 3.58

0.95 1.68 0.60 4.30 0.96 1.19 1.94 1.23

0.76 1.84 0.05 0.69 1.18 1.68 1.04 1.07

2.87 1.66 0.96 2.88 4.11 0.49 0.82 1.71

0.67 0.06 0.98 3.26 2.56 1.49 3.09 1.43

1.77 2.30 2.44 2.06 3.33 0.26 0.19 4.09

2.69 0.69 3.35 1.78 3.56 4.19 0.71 1.15

2.79 1.48 0.18 2.84 0.51 1.90 0.83 0.84

1.50 0.43 3.67 1.30 2.61 1.22 1.24 0.49

2.14 0.16 2.01 4.72 3.08 1.14 0.84 0.24

0.63 2.18 1.38 2.30 0.42 3.69 1.99 0.38

1.14 0.77 1.68 0.70 3.02 2.26 1.50 1.50

0.19 0.19 1.61 1.92 2.63 0.76 1.28 1.90

4.41 0.64 0.88 2.30 1.07 0.39 3.11 3.44

0.84 2.05 0.07 0.56 1.77 0.77 1.21 2.08

0.53 0.03 0.78 0.64 1.40 0.93 0.32 0.42

2.62 2.26 4.79 1.95 1.31 2.36 1.66 2.06

2.20 1.08 0.90 2.95 2.97 3.36 1.08 3.21

2.61 4.01 5.84 1.67 0.49 2.06 0.64 2.29

0.02 3.78 3.66 1.13

Максимальное значение: 5.84

Минимальное значение: 0.02

Kоличество чисел Чacтoтa пoпaдaния

Bыcoтa cтoлбикa гиcтoгpaммы

1:

2:

3:

4:

5:

6:

71

81

59

35

16

2

0.237

0.270

0.197

0.117

0.053

0.007

0.244

0.278

0.203

0.120

0.055

0.007

Числовые характеристики:

Среднестатистическое значение xl=1.664

Статистическая дисперсия Dxs=1.291

СреднестатистическоеотклонениеGxs=1.136

СкошенностьSks=1.193


Островершинность Exs= 0.449

Задание №3: Проверка критерием Х2 : имеет ли данный массив соответствующий закон распределения

Гистограмма и сглаживающая функция

r=k-3=6-3=3,

Вывод: Нет оснований принять гипотезу о распределении модуля случайной величины, распределенной по нормальному закону, так как


Список используемой литературы

1. «Теория вероятностей» В.С. Вентцель

2. «Теория вероятностей (Задачи и Упражнения)» В.С. Вентцель, Л.А. Овчаров

3. «Справочник по вероятностным расчётам»

4. «Теория вероятностей и математическая статистика» В.Е. Гмурман

5. «Руководство к решению задач по теории вероятностей и математической статистике» В.Е. Гмурман

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:22:18 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
16:49:48 25 ноября 2015

Работы, похожие на Курсовая работа: Теория вероятности и математическая статистика

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151060)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru