Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Курсовая работа: Теория вероятности

Название: Теория вероятности
Раздел: Рефераты по математике
Тип: курсовая работа Добавлен 15:18:01 28 мая 2010 Похожие работы
Просмотров: 129 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Московский Государственный Авиационный Институт

( технический университет )

Филиал “ Взлёт

Курсовая работа

по дисциплине "Теория вероятности и математическая статистика"

“Теория вероятности”

Выполнил студент группы ДР-2:

Архипов А.В.

Проверил преподаватель:

Егорова Т. П.

г. Ахтубинск 2004 г

Задание 1

Проверка выполнимости теоремы Бернулли на примере надёжности электрической схемы.

Формулировка теоремы Бернулли: “Частота появления события в серии опытов сходится по вероятности к вероятности данного события”.

p1 = 0.9

p2 = 0.8

p3 = 0.9

p4 = 0.8

p5 = 0.9

p6 = 0.9

Проверка теоремы с помощью программы:

Текстпрограммы:

Program bernuli;

Uses CRT;

Var op,i,j,m,n:integer;

a,pp:real;

p:array[1..6] of real;

x:array[1..6] of byte;

Begin

ClrScr;

Randomize;

p[1]:=0.9; p[2]:=0.8; p[3]:=0.9; p[4]:=0.8; p[5]:=0.9; p[6]:=0.9;

for op:=1 to 20 do begin

n:=op*100; m:=0;

write(' n=',n:4);

for i:=1 to n do begin

for j:=1 to 6 do begin

x[j]:=0;

a:=random;

if a<p[j] then x[j]:=1;

end;

if ((((((x[1]=1) and (x[2]=1)) or (x[3]=1)) and (x[4]=1)) or (x[5]=1)) and (x[6]=1)) then m:=m+1

end;

pp:=m/n;

writeln(' M=',m:4,' P*=',pp:3:6);

End;

Readln;

end.

Результаты работы программы:

Опытов: Мсходы: Вер-ть:

n= 100 M= 89 P*=0.89

n= 200 M= 173 P*=0.86

n= 300 M= 263 P*=0.88

n= 400 M= 360 P*=0.90

n= 500 M= 434 P*=0.87

n= 600 M= 530 P*=0.88

n= 700 M= 612 P*=0.87

n= 800 M= 704 P*=0.88

n= 900 M= 784 P*=0.87

n=1000 M= 865 P*=0.86

n=1100 M= 985 P*=0.90

n=1200 M=1062 P*=0.89

n=1300 M=1165 P*=0.90

n=1400 M=1238 P*=0.88

n=1500 M=1330 P*=0.89

n=1600 M=1418 P*=0.89

n=1700 M=1471 P*=0.87

n=1800 M=1581 P*=0.88

n=1900 M=1670 P*=0.88

n=2000 M=1768 P*=0.88

Вер. в опыте: p= 0.88

Проверка вручную:

Первый способ:

Второй способ:

Вывод: Теорема Бернулли верна.

Задание 2

Методом кусочной аппроксимации смоделировать случайную величину, имеющую закон распределения Коши, заполнить массив из 300 точек.

Теория:

Метод кусочной аппроксимации заключается в том, что для формирования одного случайного числа из последовательности с заданным законом распределения необходимо дважды использовать датчик случайных чисел. Процедура получения случайного числа yi сводиться к:

1. Случайный выбор интервала (определение значения aj )

2. Случайный выбор «b» из этого интервала

3. Формирование случайного числа в соответствии с формулой

При выборе интервала на первом шаге процедуры должна учитываться плотность распределения. С этой целью ее кусочно-линейно аппроксимируют отрезками прямых, параллельных оси абсцисс (рис.1.)

Рис.1. Кусочно-линейно аппроксимированный график плотности распределения по закону Коши.

Количество интервалов разбиения области определения случайной величины обычно выбирается достаточно большим (именно поэтому в данной Курсовой работе было использовано разбиение на 400 интервалов).

Решение:

Построим график плотности распределения по закону Коши ():

Рис.2. График распределения Коши.

Необходимо разбить интервал от –20 до 20 на n подинтервалов (в данном случае n=40) и вычислить вероятность попадания на каждый из этих подинтервалов. После этого составить массив [a1 ,aj ], так чтобы a1 =0, a , случайно сгенерировать значение числа «b» из промежутка от 0 до 1, найти номер интервала в который она попадет и второй раз используя датчик случайных чисел сгенерировать случайную добавку «b». Для выполнения этих действий составим программу в среде TurboPascal 7.1.

Программа позволяющая смоделировать СВ, имеющую закон распределения Коши:

Program tvmslab2;

Uses CRT,GRAPH;

Type mas=array[1..40] of real;

label 10;

const a:mas=(0.0008,0.0009,0.001,0.0011,0.0013,0.0015,0.0017,0.002,0.0024,

0.00287,0.0035,0.0043,0.0056,0.0074,0.01,0.015,0.024,0.045,0.102,0.25,0.25,

0.102, 0.045,0.024,0.015,0.01,0.0074,0.0056,0.0043,0.0035,0.00287,0.0024,0.002

0.0017,0.0015,0.0013,0.0011,0.001,0.0009,0.0008);

Xmax=20; Xmin=-20;

n=300; k=40; xn=70; xm=550; yn=180; ym=140;

Var i,j:integer;

q:boolean;

a1,y,x,e,dh,t,Mmax,hmax,t1,t2,b,Mxx,Dxx,Skx,Qxx,Exx:real;

r,d,x1,x2,y1,y2:integer;

m,xi,pix,hi,h:array[1..300] of real;

o,l:array[1..41] of real;

b1:array[0..300] of real;

st:string;

Begin

clrscr;

randomize;

o[1]:=0;

for i:=1 to 41 do begin

o[i+1]:=o[i]+a[i];

end;

x:=-20;

for i:=1 to 41 do begin

l[i]:=x;

x:=x+1;

end;

writeln(' Массив имеющий закон распределения Коши:')

writeln;

for j:=1 to 300 do begin

a1:=random;

for i:=1 to 41 do begin

if (a1>o[i]) and (a1<o[i+1]) then goto 10;

end;

10: b1[j]:=random+l[i];

write(' ',b1[j]:1:2);

if j mod 10= 0 then writeln;

if j mod 210= 0 then readln;

end;

readln;

end.

Результат работы программы:

Массив имеющий закон распределения Коши:

3.83 -9.36 0.79 0.22 -0.32 0.46 -0.73 20.98 -0.44 -1.74 0.02 0.70 -1.98 0.77 -9.79 3.24 0.36 -1.04 -4.28 2.71 -1.82 -0.92 -3.36 -0.65 0.37 -0.15 0.36 -0.61 0.76 20.56 -1.81 -8.94 0.26 0.40 1.62 0.59 -0.41 1.69 -0.02 0.29 0.61 0.32 0.86 -1.24 -1.87 -0.84 2.95 0.04 -0.63 1.54 0.53 -1.07 -0.08 -2.15 3.43 -0.66 -2.70 -0.87 0.64 0.65 0.04 3.76 -2.54 -3.80 2.40 1.22 -0.84 8.86 0.54 3.91 -0.70 -5.46 -1.64 -0.01 -0.52 -1.08 -2.16 -0.66 0.83 -1.88 1.97 0.55 3.84 -0.51 0.22 20.98 -3.00 0.46 -0.40 -2.10 0.78 20.46 -4.76 -0.36 1.30 3.85 -0.41 19.88 0.55 -1.05 0.14 -15.07 -0.87 0.18 -3.28 1.10 -0.42 -3.83 1.35 -3.82 -0.72 -1.02 -0.35 -0.13 -0.10 0.40 0.85 0.40 -0.62 1.28 -2.68 -1.88 -2.43 0.94 1.67 20.21 -0.70 -0.39 -3.56 -0.60 -3.86 -0.99 -6.71 0.79 1.62 -1.11 2.87 0.74 1.08 -0.29 -0.90 -0.22 0.04 -6.63 0.13 -0.36 -10.82 -3.04 2.81 -0.73 -0.16 0.61 -0.25 4.00 -0.93 -7.58 -0.09 0.69 0.30 2.38 0.79 11.03 -0.44 -0.56 11.12 -1.22 1.17 0.60 -1.78 -2.78 -0.85 -0.98 -1.21 3.51 0.05 0.29 -8.62 0.26 -0.56 1.68 -1.65 13.02 -0.11 0.50 -0.58 4.98 0.57 -0.51 0.78 -0.43 -1.62 0.27 0.75 0.29 20.65 0.91 0.01 3.46 -0.58 -0.50 9.42 -0.88 -1.78 0.81 1.35 -0.03 3.53 11.99 0.63 -1.65 20.66 0.36 -0.01 -0.68 0.31 0.28 16.13 -1.24 -0.36 0.99 -1.65 0.58 1.88 -0.35 0.66 0.94 1.56 0.31 0.58 0.61 -0.73 1.04 -0.61 -1.73 -1.02 -7.95 21.00 -0.98 20.94 -0.03 0.36 0.82 -2.91 1.03 0.47 -0.91 6.13 1.49 0.91 6.30 -0.93 1.03 -1.07 1.70 -0.63 -8.84 -1.87 0.01 2.63 -1.20 1.73 -1.71 -12.13 0.89 3.30 -0.24 0.36 18.97 9.16 0.77 -0.02 -0.03 -2.71 -1.20 -0.79 0.95 -0.18 0.50 5.61 -0.04 0.05 0.81 0.93 20.94 -0.91 20.17 1.70 1.66 -0.99 -0.25 -0.51 0.79 20.58 1.78 2.62 0.99 -1.45 0.89 -0.48 -0.98

Вывод : Используя данный метод можно формировать случайные величины со сколь угодно сложным законом распределения. Недостаток – необходимость некоторой подготовительной работы перед непосредственным применением процедуры и двукратное применение датчика случайных чисел для розыгрыша одного значения случайного числа Y.

Задание 3

Критерием Пирсона проверить, что данный массив имеет соответствующий закон распределения.

Для построения гистограммы и нахождения числовых характеристик, необходимо составить статистический ряд:

Статистический ряд

m[1]=0.00 x[1]=-19.5 pi[1]=0.0000 hi[1]=0.0000

m[2]=0.00 x[2]=-18.5 pi[2]=0.0000 hi[2]=0.0000

m[3]=0.00 x[3]=-17.5 pi[3]=0.0000 hi[3]=0.0000

m[4]=0.00 x[4]=-16.5 pi[4]=0.0000 hi[4]=0.0000

m[5]=1.00 x[5]=-15.5 pi[5]=0.0033 hi[5]=0.0033

m[6]=0.00 x[6]=-14.5 pi[6]=0.0000 hi[6]=0.0000

m[7]=0.00 x[7]=-13.5 pi[7]=0.0000 hi[7]=0.0000

m[8]=1.00 x[8]=-12.5 pi[8]=0.0033 hi[8]=0.0033

m[9]=0.00 x[9]=-11.5 pi[9]=0.0000 hi[9]=0.0000

m[10]=1.00 x[10]=-10.5 pi[10]=0.0033 hi[10]=0.0033

m[11]=2.00 x[11]=-9.5 pi[11]=0.0067 hi[11]=0.0067

m[12]=3.00 x[12]=-8.5 pi[12]=0.0100 hi[12]=0.0100

m[13]=2.00 x[13]=-7.5 pi[13]=0.0067 hi[13]=0.0067

m[14]=2.00 x[14]=-6.5 pi[14]=0.0067 hi[14]=0.0067

m[15]=1.00 x[15]=-5.5 pi[15]=0.0033 hi[15]=0.0033

m[16]=2.00 x[16]=-4.5 pi[16]=0.0067 hi[16]=0.0067

m[17]=8.00 x[17]=-3.5 pi[17]=0.0267 hi[17]=0.0267

m[18]=11.00 x[18]=-2.5 pi[18]=0.0367 hi[18]=0.0367

m[19]=32.00 x[19]=-1.5 pi[19]=0.1067 hi[19]=0.1067

m[20]=79.00 x[20]=-0.5 pi[20]=0.2633 hi[20]=0.2633

m[21]=83.00 x[21]=0.5 pi[21]=0.2767 hi[21]=0.2767

m[22]=26.00 x[22]=1.5 pi[22]=0.0867 hi[22]=0.0867

m[23]=8.00 x[23]=2.5 pi[23]=0.0267 hi[23]=0.0267

m[24]=12.00 x[24]=3.5 pi[24]=0.0400 hi[24]=0.0400

m[25]=1.00 x[25]=4.5 pi[25]=0.0033 hi[25]=0.0033

m[26]=1.00 x[26]=5.5 pi[26]=0.0033 hi[26]=0.0033

m[27]=2.00 x[27]=6.5 pi[27]=0.0067 hi[27]=0.0067

m[28]=0.00 x[28]=7.5 pi[28]=0.0000 hi[28]=0.0000

m[29]=1.00 x[29]=8.5 pi[29]=0.0033 hi[29]=0.0033

m[30]=2.00 x[30]=9.5 pi[30]=0.0067 hi[30]=0.0067

m[31]=0.00 x[31]=10.5 pi[31]=0.0000 hi[31]=0.0000

m[32]=3.00 x[32]=11.5 pi[32]=0.0100 hi[32]=0.0100

m[33]=0.00 x[33]=12.5 pi[33]=0.0000 hi[33]=0.0000

m[34]=1.00 x[34]=13.5 pi[34]=0.0033 hi[34]=0.0033

m[35]=0.00 x[35]=14.5 pi[35]=0.0000 hi[35]=0.0000

m[36]=0.00 x[36]=15.5 pi[36]=0.0000 hi[36]=0.0000

m[37]=1.00 x[37]=16.5 pi[37]=0.0033 hi[37]=0.0033

m[38]=0.00 x[38]=17.5 pi[38]=0.0000 hi[38]=0.0000

m[39]=1.00 x[39]=18.5 pi[39]=0.0033 hi[39]=0.0033

m[40]=1.00 x[40]=19.5 pi[40]=0.0033 hi[40]=0.0033

Построим гистограмму:

Рис.3. Гистограмма распределения по закону Коши.

По данным статистического ряда вычислим числовые характеристики:

Числовые характеристики:

- статистическое математическое ожидание

- статистическая дисперсия

- статистическое среднеквадратическое отклонение

- скошенность

- эксцесс

Для нахождения необходимо вычислить Pi (вероятности попадания на каждый из интервалов). Вероятность попадания может быть найдена как площадь криволинейной трапеции, ограниченной концами этого интервала слева и справа, и графиком плотности распределения сверху:

По найденной частоте и вероятности, вычислим значение :

Т.к. число степеней свободы r = 7, а уровень значимости p = 0.1, следовательно значение будет равным 12.02.

Вывод: Таким образом, сравнив значения и получим, что , а, следовательно, нет оснований отвергнуть гипотезу о распределении случайной величины по закону Коши.


Литература

1. Е. С. Венцель “Теория вероятности”

2. Г.М. Погодина “Лабораторные работы по курсу Теория вероятностей и статистических решений”

3. Курс лекций по Теории вероятности

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:22:17 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
16:49:47 25 ноября 2015

Работы, похожие на Курсовая работа: Теория вероятности

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150911)
Комментарии (1842)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru