Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Применение сингулярной матрицы в химии

Название: Применение сингулярной матрицы в химии
Раздел: Рефераты по химии
Тип: реферат Добавлен 01:27:07 11 октября 2006 Похожие работы
Просмотров: 209 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

(Реферат)

О Г Л А В Л Е Н И Е

Введение. 3

Глава 1. Общие сведения о сингулярном разложении и сингулярных матрицах 4

1.1. Ортогональное разложение посредством сингулярного разложения. 4

1.2. Вычисление сингулярного разложения. 5

Глава 2. Применение сингулярных матриц при многомерном анализе химических данных факторными методами. 7

2.1. Общие сведения о факторных методах. 7

2.2. Операции с матрицами и многомерный анализ данных. 9

2.3. Свойства сингулярной матрицы.. 10

Заключение. 12

Список используемой литературы.. 16

Введение

Как известно, химия часто оказывается на перекрестке разных дисциплин. Для химика всегда есть большой соблазн в том, чтобы заняться какой-то чрезвычайно узкой областью, где он останется защищенным от всех превратностей, наслаждаясь удобством положения единст­венного в своем роде специалиста. Чтобы постоянно быть в курсе дела и в готовности встретить любую новую ситуацию, химику требуется быть знако­мым с огромным объемом информации, необходимой не только для движения вперед, но и просто для сохранения своего положения.

При написании данного реферата была использована следующая литература, содержащая информацию о сингулярных матрицах и применении их в химии:

· книга «ЭВМ помогает химии» (пер. с англ) под ред. Г. Вернена, М. Шанона, в которой рассмотрено применение ЭВМ в различных областях химии: синтез органических соединений, кристаллография, масс-спектрометрия и т. д.

· книга Ч.Лоусона и Р.Хенсона «Численное решение задач метода наименьших квадратов» (пер. с англ), посвященная изложению численных решений линейных задач метода наимень­ших квадратов.

Глава 1. Общие сведения о сингулярном разложении и сингулярных матрицах

1.1. Ортогональное разложение посредством сингулярного разложения

В этом пункте данного реферата будет описано одно практически полезное ортогональ­ное разложение т xn - матрицы А. Мы покажем здесь, что невырожденную под­матрицу R матрицы A можно еще более упростить так, чтобы она стала невырожден­ной диагональной матрицей. Получаемое в результате разложение особенно полезно при анализе влияния ошибок входной информации на решение задачи НК.

Это разложение тесно связано со спектральным разложением симметрич­ных неотрицательно определенных матриц AT A иAAT .

Теорема (сингулярное разложение). Пусть А - m xn -матрица ранга k. Тогда существуют ортогональная m xm матрица U, ортогональ­ная n xn -матрица V и диагональная m xn -матрица S) такие, что

Матрицу S можно выбрать так, чтобы ее диагональные элементы составля­ли невозрастающую последовательность; все эти элементы неотрицательны и ровно k из них строго положительны.

Диагональные элементы S называются сингулярными числами А.

Доказательства данной теоремы приводить не имеет смысла во избежание нагромождения множества сложных математических выкладок, прямого отношения к теме, рассматриваемой в данном реферате, не имеющих. Ограничимся следующим численным примером, в котором дано сингулярное разложение матри­цы А вида:

1.2. Вычисление сингулярного разложения

Рассмотрим теперь построение сингулярного разложения т Х n - матрицы в предположении, что т > п. Сингулярное разложение будет вычислено в два этапа.

На первом этапе А преобразуется к верхней двухдиагональной матрице посредством последовательности (не более чем из n — 1) преобразований Хаусхолдера

где

Трансформирующая матрица выбирается так, чтобы аннулировать элементы i + 1, ..., т столбца i; матрица Hi — так, чтобы аннулировав элементы i + 1,.... п строки / - 1.

Заметим, что Qn - это попросту единичная матрица. Она включена, чтобы упростить обозначения; Qn также будет единичной матрицей при от = я, но при т > п она, вообще говоря, отличается от единичной.

Второй этап процесса состоит в применении специальным образом адап­тированного QR-алгоритма к вычислению сингулярного разложения матрицы

Здесь - ортогональные матрицы, aS диагональная.

Можно получить сингулярное разложение А:

Сингулярное разложение матрицы В будет получено посредством следующего итерационного процесса:

Здесь - ортогональные матрицы, а Bk - верхняя двухдиагональ­ная матрица для всех k.

Заметим, что диагональные элементы матрицы полученной непосред­ственно из этой итерационной процедуры, не являются в общем случае ни положительными, ни упорядоченными. Эти свойства обеспечиваются специальной последующей обработкой.

Сама итерационная процедура представляет собой (QR-алгоритм Фрэнсиса, адаптированный Голубом и Райншем к задаче вычисления сингулярных чисел.

Глава 2. Применение сингулярных матриц при многомерном анализе химических данных факторными методами

2.1. Общие сведения о факторных методах

Многомерный анализ данных играет все возрастающую роль во многих научных дисциплинах, включая науки о земле, жизнеобес­печении, в социологии, а также менеджменте. Однако в химии эти методы развивались не так быстро. Хотя основы методов были созданы в начале века, а области их применения были опре­делены в тридцатых годах , первые случаи их использова­ния отмечены только в шестидесятых годах. Действительно, наи­более часто применяемыми в хемометрике методами стали фактор­ный анализ (ФА), анализ (метод) главных компонент (МГК) и факторный дискриминантный анализ (ФДА).

Хемометрика преследует две цели :

· извлечение максимума информации за счет анализа химиче­ских данных;

· оптимальное планирование измерительных процедур и экспе­риментов.

Первая цель может быть подразделена на две:

1) описание, классификация и интерпретация химических данных;

2) моделирование химических экспериментов, процессов и их последующая оптимизация.

Из всего многообразия видов обработки наборов химических данных можно выделить некоторые наиболее характерные области применения:

· многокомпонентный анализ спектрометрических или хромато-графических данных различных смесей. Цель анализа — опреде­ление числа компонентов и иногда также их идентификация. Для решения задач, связанных с равновесиями в растворе и сложной кинетикой, используется факторный анализ;

· поиск неизмеряемых факторов, отражающих те физико-хими­ческие свойства, которые оказываются слишком сложными для точного моделирования, например, таких, как:

а) времена задержки для хроматографии;

б) данные по химическому сдвигу;

в) константы равновесия и кинетические константы;

г) данные по степени превращения и селективности.

Интерпретация этих факторов может высветить новые явле­ния или подчеркнуть те физические свойства, которые помогут объяснить исходные наблюдения:

· сведение наборов химических данных с большим числом пере­менных (которые часто коррелируют, а иногда и избыточны) к на­борам с меньшим числом независимых переменных. Каждая точ­ка будет характеризоваться меньшим числом новых переменных, которые затем могут быть использованы для модельных исследо­ваний. Этот метод можно применять для многокомпонентных природных продуктов со сложными физико-химическими свойства­ми (эфирные масла, продукты из сырой нефти и т. д.), а также для замеренных в ходе процесса наборов данных;

· анализ многомерных наборов химических данных посредством графического представления объектов и переменных в векторном подпространстве с меньшим числом измерений. Подобное пред­ставление позволяет осуществить обзор всего набора данных для классификации объектов и объяснения их положения.

Цель данного пункта моего реферата — введение в методы факторного анализа с рассмотрением его теоретических основ и практических приложений.

Факторный анализ (ФА), анализ главных компонент (МГК) и факторный дискриминантный анализ (ФДА) будут представлены на различных специально подобранных примерах, иллюстрирую­щих множество областей их применения.

2.2. Операции с матрицами и многомерный анализ данных

Применение линейной алгебры в анализе данных будет проил­люстрировано на примере УФ-спектроскопии сложной смеси. В соответствии с законом Ламберта — Бера при данной частоте v полное поглощение образца, состоящего из l поглощающих компо­нентов, определяется как

, где – молярный коэффициент поглощения компонента j, а – молярная концентрация компонента j.

Если измерение проводится при п различных частотах, тогда единственное уравнение заменяется системой линейных уравнений

С использованием матриц следующую систему линейных урав­нений можно записать в виде:

Для дальнейшего упрощения выражения запишем матрицу поглощения (А) как произведение матриц коэффициентов экстинкции () и концентрации (С):

(A) = () (C)

Следует отметить, что матричные расчеты и их компьютерное применение дали тол­чок быстрому развитию многомерного анализа данных.

2.3. Свойства сингулярной матрицы

Матрица (X— Х)'(Х—) — квадратная, симметричная и положи­тельно определенная. Такие матрицы проявляют некоторые свой­ства, особенно полезные при анализе данных:

· собственные значения, действительные, а также положитель­ные или равные нулю;

· число ненулевых собственных значений равняется рангу мат­рицы;

· два собственных вектора, связанные с двумя различными соб­ственными значениями ортогональны.

В качестве иллюстрации этих свойств, а также чтобы пока­зать их важность при анализе данных можно взять матрицу дисперсий-ковариаций и определим собственные значения матрицы методом наименьших квадратов.

Решая уравнение, получаем два собственных значения:

= 0 ,

что дает =1 и =0,6.

Как , так и действительны и положительны. Ранг матрицы должен равняться 2, поскольку в системе существуют два ненуле­вых собственных значения. Компоненты собственных векторов, связанные с каждым из собственных значений, получаем из опре­деления собственных векторов следующим образом:

для первого собственного значения

для второго собственного значения

Отметим, что два связанных с каждым из собственных зна­чений вектора действительно ортогональны (т. е. их скалярное произведение равно нулю). В этих двух наборах векторов мы можем выбрать два нормированных вектора, которые соответствен­но составляют ортогональный базис:

Векторы и действительно аналогичны тем, которые опре­делены в разделе 5.2.1, а координаты матрицы данных относитель­но этой точки отклика уже вычислены:

( Y) = ( X-) ( U)

Заключение

Факторные методы (в том числе связанные с использованием сингулярных матриц) ныне широко применяются для анализа дан­ных в химии. Они в основном носят описательный характер и позволяют существенно сократить размерность массива данных при минимальной потере информации и возможности их графи­ческого представления.

Хотя эти методы и не обладают возможностями моделирования, как регрессионный анализ, их можно применять для идентифи­кации:

· компонентов в многокомпонентных смесях, проанализирован­ных посредством ультрафиолетового, инфракрасного и видимого излучения, флюоресценции, масс-спектрометрии, хроматографии (ФА);

· реальных физических факторов, управляющих эксперименталь­ными данными (целевой факторный анализ):

· группы, к которой можно отнести новый объект в системе ис­ходных групп, на которые был классифицирован первоначальный набор данных (ФДА).

Известная мысль А.Пуанкере о том, что в конечном счёте главной задачей науки является экономия мысли и труда, со всей очевидностью проявилась в разработке в 80-90-х годах ХХ века компьютерных программ для упрощения расчетов, связанных с сингулярными матрицами.

Действительно, в настоящее время химик, желающий применить эти методы к соб­ственным массивам данных, имеет возможность широкого выбора имеющихся в продаже программ для компьютеров. Множество программ было написано для больших, мини- и в последнее время — микрокомпьютеров.

Однако нельзя упустить из виду, что хорошая интерпретация результатов невозможна без знания физико-химических моделей, которые позволяют правильно поставить эксперимент и получить необходимые данные. Следовательно, участие человека будет все еще незаменимо в извлечении полезной информации из распечаток (листингов) с численными результатами и графиками.

Вмешательство химика происходит на различных стадиях:

· при выборе исходных наборов данных, которые корректно представляют все множество исследуемых объектов;

· выборе удовлетворительных методов преобразования данных;

· поиске физического смысла абстрактных факторов;

· интерпретации относительных положений объектов;

· классификации.

Применительно к ближайшему будущему можно выделить два основных параллельных направления развития приложений факторных методов в химии: первое, связано с развитием области применения; второе — с развитием программных средств и совер­шенствованием методик.

Факторный анализ можно применять:

· для завершения многокомпонентного анализа в частотной области, сравнения спектров и библиотечного поиска, улучшения методик хроматографического определения и т. д.;

· анализа сложных промышленных процессов с большим коли­чеством данных, для которых нельзя создать чистой фундамен­тальной модели. Факторный анализ этих наборов данных будет первой ступенью в моделировании указанных процессов;

· изучения взаимосвязи структуры с физико-химическими свой­ствами, такими, как реакционная способность, биологическая активность органических, неорганических и биоорганических соединений;

· рассмотрения химических процессов в окружающей среде с учетом географических и климатических особенностей регионов.

С развитием программных средств и совершенствованием методик факторные методы будут становиться все проще для использования неспециалистами. Отметим здесь только некоторые тенденции:

· интеграция доступных программных средств со множеством вспомогательных программ представления данных, предваритель­ной их обработки, факторного анализа, моделирования, решения задач оптимизации и распознавания образов. Эти средства будут поставлены на персональных компьютерах, что удобно для хими­ков. Более того, они станут частью автоматизированных систем сбора и обработки данных физико-химического анализа;

· включение в программные средства модулей для проверки предположения о линейности при выборе исходных переменных как непосредственно по экспериментальным результатам, так и по выбранным соотношениям между переменными;

· включение в программные средства модулей оценки погреш­ности факторных нагрузок, что поможет аналитику оценить реальность выявленных факторов. Целесообразна разработка ста­тистических тестов для использования при решении об отнесении нового объекта к одной из групп;

· использование одновременной обработки многопараметриче­ских наборов данных, что позволит сопоставить методы много­компонентного анализа, а при обработке массивов данных, завися­щих от времени,— исследовать эволюцию химических процессов;

· введение в программное обеспечение концепции искусственно­го интеллекта. Это поможет аналитику в интерпретации резуль­татов, анализе геометрического представления объектов, а в даль­нейшем — в автоматическом моделировании групп и кластеров объектов.

Список используемой литературы

1. ЭВМ помогает химии: Пер. с англ. /Под ред. Г. Вернена, М. Шанона.— Л.: Химия, 1990.— Пер. изд.: Вели­кобритания, 1986. - 384 с.

2. Лоусон Ч., Хенсон Р. Численное решение задач метода наименьших квадратов/Пер, с англ. - М.: Наука. Гл. ред. физ.-мат. лит., 1986. - 232 с.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:21:20 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
16:49:19 25 ноября 2015

Работы, похожие на Реферат: Применение сингулярной матрицы в химии

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151085)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru