Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Корреляционный обнаружитель одиночных сигналов известной формы

Название: Корреляционный обнаружитель одиночных сигналов известной формы
Раздел: Рефераты по коммуникации и связи
Тип: реферат Добавлен 17:41:55 24 января 2009 Похожие работы
Просмотров: 309 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

БЕЛОРУССКИЙ ГОСУДРАСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра ЭТТ

РЕФЕРАТ

На тему:

"Корреляционный обнаружитель одиночных сигналов известной формы"

МИНСК, 2008

Отношение правдоподобия. Алгоритм обработки

Принятый одиночный сигнал можно рассматривать как функцию времени с известным законом модуляции, но неизвестными параметрами - временем запаздывания tr, доплеровским сдвигом частоты Fдс, амплитудой Ес и фазой φс. Неопределённость относительно времени запаздывания и доплеровского сдвига частоты заставляет просматривать (одновременно или последовательно) все элементы разрешения по trи Fдс и принимать решения по каждому из них. Амплитуду и фазу принятого сигнала следует считать случайными, но постоянными на интервале, равном длительности сигнала T0. поскольку длительность одиночного сигнала, как правило, значительно меньше времени корреляции амплитудных и фазовых Флуктуации принятого сигнала (T0 << τc).

Представим одиночный сигнал в следующем вице:

Помеху будем считать стационарным нормальным случайным процессом с комплексной огибающей N(t)

n(t) = N(t) exp(iω0t),

с нулевым средним значением

Учитывая особенность задачи обработки одиночных сигналов как задачи внутрипериодной обработки, можно воспользоваться единым представлением шумов и мешающих отражений, так как внутрипериодная структура мешающих отражений аналогична структуре шума: ширина спектра внутрипериодной структуры мешающих отражений определяется шириной спектра модуляции зондирующего сигнала. Поэтому в первом приближении и шум, и мешающие отражения в рассматриваемой задаче можно считать белым шумом со спектральной плотностью соответственно:

- для шума,

- для мешающих отражений.

Значения сигнала и помехи в дискретные моменты времени tg = g∆t можно представить в виде

При этом корреляционные свойства дискретных значений помехи, мешающей обнаружению одиночного сигнала, описываются символом Кронекера:

Найдём отношение правдоподобия, определяющее структуру устройства оптимальной обработки одиночного сигнала. Многомерная плотность вероятности дискретных значений входного сигнала fg, в отсутствие полезного сигнала (fg = ng) определяется выражением

где L = T0/∆t - число дискретных значений за длительность одиночного сигнала.

При наличии полезного сигнала дискретные значения входного сигнала f(t) равны:

fg = mg + ng.

Учитывая, что полезный сигнал за время, равное его длительности, является известной функцией времени с постоянной амплитудой и фазой, можно утверждать, что наличие сигнала приводит лишь к смещению распределения величин fgпо сравнению со случаем, когда действует одна помеха, поскольку в этом случае ng = fg – mg:

Отношение правдоподобия принимает следующий вид:

где

Величина R(Ec) от входного сигнала, т.е. от входной последовательности fgне зависит. Поэтому решение о наличии или отсутствии полезного сигнала можно принимать по величине Q(Ec, φc), зависящей от входного сигнала и монотонно связанной с отношением правдоподобия:

Последнее выражение может служить алгоритмом обработки одиночного сигнала известной формы на фоне белого шума, из которого следует, что такая обработка в своей существенной части сводится к линейной обработке - весовому суммированию дискретных значений входного сигнала fg, причём весовые коэффициенты mg = m(tg) определяются прообразом ожидаемого сигнала в анализируемом элементе разрешения - его формой или законом модуляции U0(t), несущей частотой ω0, временем запаздывания tr, доплеровским смещением частоты Fдс, амплитудой Ecи начальной фазой φc. Ниже рассматриваются схемы корреляционных обнаружителей одиночного сигнала с различной степенью известности его параметров.

Схема корреляционного обнаружителя одиночного сигнала с полностью известными параметрами. Сжатие сигнала по спектру.

Переходя от дискретного к непрерывному времени, логарифм отношения правдоподобия можно представить в виде:

где - корреляционный интеграл,

- опорный сигнал.

Решение о наличии сигнала можно принимать, формируя квадратурную составляющую корреляционного интеграла, монотонно связанную с отношением правдоподобия, и сравнивая ее с порогом:

Схема соответствующего корреляционного обнаружителя показана на рис.1.

Квадратурная составляющая корреляционного интеграла формируется путем скалярного перемножения принятого и опорного сигналов и последующего интегрирования этого произведения. Роль скалярного перемножителя выполняет фазовый детектор. Опорный сигнал формируется с учетом знания всех параметров принимаемого сигнала: закона модуляции, времени запаздывания, несущей частоты, ее доплеровского смещения, фазы, амплитуды.

На рис.2 показаны эпюры, поясняющие работу корреляционного обнаружителя (на примере пятиэлементного кода Баркера). После перемножения принятого и опорного сигналов происходит демодуляция полезного сигнала, т.е. устранение его внутриимпульсной фазовой или частотной модуляции:

На выходе фазового детектора формируется видеоимпульс, форма которого определяется квадратом амплитудного закона модуляции сигнала. Ширина спектра демодулированного сигнала становится обратно пропорциональной длительности сигнала ∆F = 1/T0 т.е. происходит сжатие сигнала по спектру, причём коэффициент сжатия оказывается равным базе сигнала:

Ксж = ∆f0/∆F = ∆f0T0

Рис.1. Корреляционный обнаружитель одиночного сигнала с полностью известными параметрами.

Рис.2. Пояснение работы корреляционного обнаружителя одиночного сигнала с полностью известными параметрами.

Напряжение на выходе интегратора в течение длительности сигнала увеличивается: идёт процесс накопления энергии сигнала. В конце длительности сигнала, когда напряжение на выходе коррелятора (сочетание перемножителя и интегратора) достигает максимального уровня, должно осуществляться его сравнение с порогом и приниматься решение о наличии или отсутствии сигнала. Следует заметить, что управление порогом Х* при изменении энергии сигнала Эс и спектральной плотности помехи Nо осуществляется так, что при соответствующих изменениях условных вероятностей D и F обеспечивается их максимальная взвешенная ревность D - l0 F, а следовательно минимальный средний риск R.

Схемы корреляционных обнаружителей одиночного сигнала с неизвестной начальной фазой.

Описанная выше схема корреляционного обнаружителя одиночного сигнала с полностью известными параметрами имеет лишь теоретическое значение. В действительности амплитуда и фаза принятого сигнала априорно неизвестны. В связи с этим найдем усредненное по начальной фазе отношение правдоподобия, учитывая при этом, что начальная фаза равномерно распределена на интервале от - π до π радиан. Для этого вначале величину Q(Ec, φc), монотонно связанную с отношением правдоподобия, представим в виде, отражающем явную функциональную связь с начальной фазой принятого сигнала:

где

Усреднённое по начальной фазе принятого сигнала отношение правдоподобия приобретает вид:

где - модифицированная функция Бесселя нулевого порядка, являющаяся монотонно возрастающей функцией своего аргумента (рис.3).

Из полученного выражения следует, что решение о наличии сигнала может быть принято по величине Z, которая после перехода от дискретного времени к непрерывному оказывается квадратом модуля корреляционного интеграла

где - опорный сигнал, амплитуда и фаза которого (Ег, φг) не связаны с амплитудой и фазой принятого сигнала (Ес, φс).

Существует два варианта схемной интерпретации математических операций над принятым сигналом f(t), содержащихся в полученном выражении.

Первый вариант сводится к корреляционной обработке на некоторой радиочастоте ωпр. Это означает, во-первых, смещение опорного сигнала по частоте на промежуточную частоту:

во-вторых, перемножение принятого и опорного сигнале о помощью смесителя - перемножителя, в результате которого происходит внутриимпульсная демодуляция полезного сигнала, т.е. устранение внутриимпульсной фазовой или частотной модуляции, и формирование радиоимпульса на промежуточной частоте, форма которого определяется квадратом амплитудного закона модуляции сигнала:

Рис.3. Модифицированная функция Бесселя нулевого порядка.

Рис.4. Импульсная характеристика идеального радиоинтегратора.


W ZA1*,

f(t)

A0*,

Ur(t)

Рис.5. Корреляционный обнаружитель одиночного сигнала с неизвестной начальной фазой и обработкой на радиочастоте.

и, в-третьих, интегрирование демодулированного и сжатого по спектру сигнала (Ксж = ∆f0T0) на радиочастоте с помощью идеального радиоинтегратора, импульсная характеристика которого, т.е. отклик не дельта-функцию, представляет собой незатухающее колебание на промежуточной частоте (рис.4):

Vu(t) = exp(iωпрt), t > 0.

При этом квадрат модуля корреляционного интеграла представляется в виде:

Схема корреляционного обнаружителя одиночного сигнала с неизвестной начальной фазой не радиочастоте показана на рис.5.

Эпюры сигналов, поясняющие работу корреляционного обнаружителя с обработкой на радиочастоте, показаны на Рис.6.

Заметим, что в условиях априорной неопределённости (т.е. незнания) амплитуды сигнала, формирование порога, обеспечивающего максимум взвешенной разности D – l0F или минимум среднего риска R, принципиально невозможно. В этом случае порог Z* формируют, исходя из некоторой фиксированной достаточно малой условной вероятности ложной тревоги F=const <<1. В реальных условиях не существует идеальных радиоинтеграторов и вместо них используются узкополосные фильтры на промежуточной частоте, импульсная характеристика которых, т.е. отклик на дельта-функцию представляет собой затухающее колебание (рис.7):

где Тф = 1/2∆fср - постоянная времени узкополосного фильтра, обратно пропорциональная удвоенной полоса пропускания.

Чтобы характеристики корреляционного обнаружителя с узкополосным фильтром заметно не уступали оптимальному корреляционному обнаружителю с идеальным радиоинтегратором, достаточно выполнения условия:

Тф >> Т0.

Рис.6. Пояснение работы корреляционного обнаружителя одиночного сигнала с неизвестной начальной фазой и обработкой на радиочастоте.

Рис.7. Корреляционный обнаружитель одиночного сигнала с неизвестной начальной фазой и обработкой на видео частоте с двумя квадратурными каналами.

Рис.8. Импульсная характеристика узкополосного фильтра.

Амплитуда колебания на выходе узкополосного фильтра достигает максимального значения в момент времени t = tr + T0, т.е. в конце сигнала, когда заканчивается накопление его энергии, после чего амплитуде этого колебания начинает уменьшаться. Поэтому сравнение с порогом выходного сигнала устройства обработки Z(t), тем более, необходимо осуществить без задержки в момент времени t = tr + T0.

Второй вариант схемного построения корреляционного обнаружителя одиночного сигнала с неизвестной начальной фазой сводится к обработке на видеочастоте с двумя квадратурными каналами. Действительно, представляя квадрат модуля корреляционного интеграла суммой квадратов его действительной и мнимой частей

где

приходим к схеме корреляционной обработки с двумя каналами, отличающимися фазовым сдвигом опорных сигналов на π/2 радиан и поэтому называющимися квадратурными (рис. .8):

Роль скалярных перемножителей в каналах выполняют фазовые детекторы. Роль интеграторов могут выполнять апериодические RC - цепочки, постоянная времени которых Тф = RC много больше длительности сигнала (Тф >> Т0). Роль квадраторов могут выполнять двухполупериодные выпрямители.

Рассмотренные варианты схемного построения корреляционного обнаружителя одиночного сигнала с неизвестной начальной фазой устраняют так называемый эффект "слепой фазы". Суть этого эффекта состоит в потере сигнала при неблагоприятном соотношении фаз принятого φс и опорного φг сигналов. Если эти фазы отличаются на ±π/2 радиан, т.е. если принятый и опорный сигналы являются взаимно ортогональными, то их скалярное произведение на выходе фазового детектора будет равно нулю. Следовательно, в таком случае при одноканальном построении корреляционного обнаружителя с обработкой на видеочастоте (рис.1) имел бы место эффект "слепой фазы". Схемы корреляционных обнаружителей, показанные на рис.5 и рис.8, лишены этого недостатка.

ЛИТЕРАТУРА

1. Охрименко А.Е. Основы извлечения, обработки и передачи информации. (В 6 частях). Минск, МРТИ, 2004.

2. Медицинская техника, М., Медицина 1996-2000 г.

3. Сиверс А.П. Проектирование радиоприемных устройств, М., Радио и связь, 2006.

4. Чердынцев В.В. Радиотехнические системы. – Мн.: Высшая школа, 2005.

5. Радиотехника и электроника. Межведомств. темат. научн. сборник. Вып. 22, Минск, БГУИР, 2004.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений06:51:38 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
16:16:36 25 ноября 2015

Работы, похожие на Реферат: Корреляционный обнаружитель одиночных сигналов известной формы

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150154)
Комментарии (1830)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru