Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364141
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8693)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Математика Древнего Египта

Название: Математика Древнего Египта
Раздел: Рефераты по математике
Тип: реферат Добавлен 23:39:18 17 декабря 2009 Похожие работы
Просмотров: 4985 Комментариев: 4 Оценило: 5 человек Средний балл: 3.6 Оценка: неизвестно     Скачать

МАТЕМАТИКА ДРЕВНЕГО ЕГИПТА

Бурдун Вячеслав

г. Луганск

ССФМШ №1 6-а класс

11 лет


Математика Древнего Египта

Мы начнем наше исследование гораздо раньше указанных дат в описании проекта. Ведь успехи античных математиков (в том числе и Фалеса) не могли возникнуть на пустом месте. Народы Древнего востока на протяжении многих веков сделали немало открытий в арифметике, геометрии и астрономии.

Самые ранние математические тексты, известные в наши дни, оставили две великие цивилизации древности - Египет и Месопотамия. Именно там появились первые математические задачи, решения которых требовала повседневная жизнь.

Уровень древнеегипетской математики был довольно высок. Источников, по которым можно судить об уровне математических знаний древних египтян, совсем немного. Во-первых, это папирус Райнда, названный так по имени своего первого владельца. Он был найден в 1858 г., расшифрован и издан в 1870 г. Рукопись представляла собой узкую (33 см) и длинную (5,25 м) полосу папируса, содержащую 84 задачи. Теперь одна часть папируса хранится в Британском музее в Лондоне, а другая находится в Нью-Йорке. Во-вторых, так называемый Московский папирус - его в декабре 1888 г. приобрёл в Луксоре русский Египтолог Владимир Семёнович Голенищев. Сейчас папирус принадлежит Государственному музею изобразительных искусств имени А. С. Пушкина. Этот свиток длиной 5,44 м и шириной 8 см включает 25 задач. И наконец, "Кожаный свиток египетской математики", с большим трудом расправлённый в 1927 г. и во многом проливший свет на арифметические знания египтян. Ныне он хранится в Британском музее. Подобные папирусы, по-видимому, служили своего рода учебниками. В папирусах есть задачи на вычисление - образцы выполнения арифметических операций, задачи на раздел имущества, на нахождение объёма амбара или корзины, площади поля и т. д.

Все правила счёта древних египтян основывались на умении складывать и вычитать, удваивать числа и дополнять дроби до единицы. Умножение и деление сводили к сложению при помощи особой операции - многократного удвоения или раздвоения чисел. Выглядели такие расчёты довольно громоздко. Для дробей были специальные обозначения. Египтяне использовали дроби вида 1/n, где n - натуральное число. Такие дроби называются аликвотными. Иногда вместо деления m:n производили умножение m*(1/n). Надо сказать, что действия с дробями составляли особенность египетской арифметики, в которой самые простые вычисления порой превращались в сложные задачи.

Сравнительно небольшой круг задач в египетских папирусах сводится к решению простейших уравнений с одним неизвестным. При решении подобных задач для неизвестного использовали специальный иероглиф со значением "куча". В задачах про "кучу", решаемых единым методом, можно усмотреть зачатки алгебры как науки об уравнениях.

В египетских папирусах встречаются также задачи на арифметическую и геометрическую прогрессии, что ещё раз подчёркивает не только практический, но и теоретический характер древней математики. Поразительно, но при довольно примитивной и громоздкой арифметике египтяне смогли добиться значительных успехов в геометрии. Они умели точно находить площадь поля прямоугольной, треугольной и трапециевидной формы. Известно, что в середине І тысячелетия до н. э. для построения прямого угла египтяне использовали верёвку, разделённую узлами на 12 равных частей. Концы верёвки связывали и затем натягивали её на 3 колышка. Если стороны относились как 3:4:5, то получался прямоугольный треугольник. И это - единственный прямоугольный треугольник, который знали в Древнем Египте.

Важным достижением геометрической науки египтян было очень хорошее приближение числа π, которое получается из формулы для площади круга диаметра d. Этому правилу из 50-ой задачи папируса Райанда соответствует значение π» 3,1605. Однако каким образом египтяне получили саму формулу, из контекста неясно. Заметим, что на всём Древнем Востоке при вычислениях использовалось значение π=3. Так что в этом отношении египтяне намного опередили другие народы.

Среди пространственных тел самым "египетским" можно считать пирамиду, ведь именно такую форму имеют знаменитые усыпальницы фараонов. Так вот, оказывается, кроме объёма куба, параллелепипеда, призмы и цилиндра египтяне умели вычислять объём усечённой пирамиды, в основаниях которой лежат квадраты со сторонами a и b, а высота h. Для этого они применяли специальную формулу. Эта формула считается высшим достижением древнеегипетской математики.

Математика в Древнем Египте представляла собой совокупность знаний, между которыми ещё не существовало чётких границ. Это были правила для решения конкретных задач, имевших практическое значение. И лишь постепенно, очень и очень медленно, задачи начали обобщаться и приобретать более абстрактные черты.

Как могло появиться первое приближение числа π

По поводу формулы площади круга нам кажется весьма правдоподобной гипотеза автора многочисленных книг по истории математика А.Е. Раик: площадь круга диаметра d сравнивается с площадью описанного вокруг него квадрата, из которого по очереди удаляются малые квадраты со сторонами (1/6)d и (1/9)d.

В наших обозначениях вычисления будут выглядеть так. В первом приближении площади круга S равна разности между площадью квадрата со стороной d и суммарной площадью 4-ёх малых квадратов А со стороной (1/6)d:

S » d2 -4(1/6*d)2 =d2 (1-1/9)=(8/9)d2

Далее из полученной площади нужно вычесть площадь 8-ми квадратов В со стороной (1/9)d, и тогда площадь круга будет приближённо равна следующему выражению:

S » (1-1/9)d2 -8(1/9*d)2 =(1-1/9)d2 -1/9*(8/9)d2 =(1-1/9)d2 -1/9(1-1/9)d2 =(1-1/9)2 d2

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Ваш сайт очень полезный! Сделай паузу, студент, вот повеселись: На экзамене по физике профессор пытается вытянуть на положительную оценку нерадивого студента: - Вы можете назвать фамилию хотя бы одного выдающегося физика? - Конечно, вы - профессор. Кстати, анекдот взят с chatanekdotov.ru
Лопух21:50:07 08 июля 2017
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:28:48 19 марта 2016
ужас 2
16:02:54 12 января 2016Оценка: 2 - Плохо
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
15:54:40 25 ноября 2015

Работы, похожие на Реферат: Математика Древнего Египта

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(174221)
Комментарии (1985)
Copyright © 2005-2017 BestReferat.ru bestreferat@gmail.com реклама на сайте

Рейтинг@Mail.ru