Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Статья: Краткое доказательство великой теоремы Ферма

Название: Краткое доказательство великой теоремы Ферма
Раздел: Рефераты по математике
Тип: статья Добавлен 02:55:54 24 мая 2009 Похожие работы
Просмотров: 869 Комментариев: 5 Оценило: 1 человек Средний балл: 2 Оценка: неизвестно     Скачать

Файл FERMA-KDVar © Н. М. Козий, 2008

Свидетельство Украины № 27312

о регистрации авторского права

КРАТКОЕ ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА


Великая теорема Ферма формулируется следующим образом: диофантово уравнение (http://soluvel.okis.ru/evrika.html):

А n + В n = С n * /1/

где n - целое положительное число, большее двух, не имеет решения в целых положительных числах A , B , С .

ДОКАЗАТЕЛЬСТВО

Из формулировки Великой теоремы Ферма следует: если n – целое положительное число, большее двух, то при условии, что два из трех чисел А , В или С - целые положительные числа, одно из этих чисел не является целым положительным числом.

Доказательство строим, исходя из основной теоремы арифметики, которая называется «теоремой о единственности факторизации» или «теоремой о единственности разложения на простые множители целых составных чисел». Возможны нечетные и четные показатели степени n . Рассмотрим оба случая.

1. Случай первый: показатель степени n - нечетное число.

В этом случае выражение /1/ преобразуется по известным формулам следующим образом:

А n + В n = С n = (A+B)[An-1 -An-2 ·B +An-3 ·B2 - …-A·Bn-2 +Bn-1 ] /2/

Полагаем, что A и B – целые положительные числа.

Числа А , В и С должны быть взаимно простыми числами.

Из уравнения /2/ следует, что при заданных значениях чисел A и B множитель ( A + B ) имеет одно и тоже значение при любых значениях показателя степени n , следовательно, он является делителем числа С.

Допустим, что число С - целое положительное число. С учетом принятых условий и основной теоремы арифметики должновыполняться условие:

С n = An + Bn =(A+B)n ∙ Dn , / 3/

гдемножитель Dn должен быть целым числом и, следовательно, число D также должно быть целым числом.

Из уравнения /3/ следует:

/4/

Из уравнения /3/ также следует, что число [Cn = An + Bn ] при условии, что число С – целое число, должно делиться на число ( A + B ) n . Однако известно, что:

An + Bn < ( A + B ) n /5/

Следовательно:

- дробное число, меньшее единицы. /6/

- дробное число.

Отсюда следует, что при нечетном значении показателя степени n уравнение /1/ великой теоремы Ферма не имеет решения в целых положительных числах.

При нечетных показателях степени n >2 число:

< 1- дробное число, не являющееся рациональной дробью.

Из анализа уравнения /2/ следует, что при нечетном показателе степени n число:

С n = А n + В n = (A+B)[An-1 -An-2 ·B +An-3 ·B2 - …-A·Bn-2 +Bn-1 ]

состоит из двух определенных алгебраических множителей, при этом при любом значении показателя степени n неизменным остаетсяалгебраический множитель ( A + B ).

Таким образом, великая теорема Ферма не имеет решения в целых положительных числах при нечетном показателе степени n >2.

2. Случай второй: показатель степени n - четное число.

Суть великой теоремы Ферма не изменится, если уравнение /1/ перепишем следующим образом:

An = Cn - Bn /7/

В этом случае уравнение /7/ преобразуется следующим образом:

An = Cn - Bn = ( С +B)∙(Cn-1 + Cn-2 · B+ Cn-3 ∙ B2 +…+ C Bn -2 + Bn -1 ). /8/

Принимаем, что С и В – целые числа.

Из уравнения /8/ следует, что при заданных значениях чисел B и C множитель (С+ B ) имеет одно и тоже значение при любых значениях показателя степени n , следовательно, он является делителем числа A .

Допустим, что число А – целое число. С учетом принятых условий и основной теоремы арифметики должновыполняться условие:

А n = С n - Bn =(С+ B ) n Dn , / 9/

гдемножитель Dn должен быть целым числом и, следовательно, число D также должно быть целым числом.

Из уравнения /9/ следует:

/10/

Из уравнения /9/ также следует, что число [А n = С n - Bn ] при условии, что число А – целое число, должно делиться на число (С+ B ) n . Однако известно, что:

С n - Bn < (С+ B ) n /11/

Следовательно:

- дробное число, меньшее единицы. /12/

- дробное число.

Отсюда следует, что при нечетном значении показателя степени n уравнение /1/ великой теоремы Ферма не имеет решения в целых положительных числах.

При четных показателях степени n >2 число:

< 1- дробное число, не являющееся рациональной дробью.


Таким образом, великая теорема Ферма не имеет решения в целых положительных числах и при четном показателе степени n >2.

Из изложенного следует общий вывод: уравнение /1/ великой теоремы Ферма не имеет решения в целых положительных числах А, В и С при условии, что показатель степени n >2.

ДОПОЛНИТЕЛЬНЫЕ ОБОСНОВАНИЯ

В том случае когда показатель степени n четное число, алгебраическое выражение (Cn - Bn ) раскладывается на алгебраические множители:

C2 – B2 = (C-B) ∙ (C+B); /13/

C4 – B4 = ( C-B) ∙ (C+B) (C2 + B2 );/14/

C6 – B6 = (C-B) ∙ (C+B) · (C2 –CB + B2 ) ∙ (C2 +CB+ B2 ); /15/

C8 – B8 = (C-B) ∙ (C+B) ∙ (C2 + B2 ) ∙ (C4 + B4 )./16/

Приведем примеры в числах.

ПРИМЕР 1: В=11; С=35.

C 2 B 2 = (22 ∙ 3) ∙ (2 · 23) = 24 · 3 · 23;

C 4 B 4 = (22 ∙ 3) ∙ (2 · 23) · (2 · 673) = 24 · 3 · 23 · 673;

C 6 B 6 = (22 ∙ 3) ∙ (2 · 23) · (312 ) ·(3 · 577) =2 ∙ 3 ∙ 23 ∙ 312 ∙ 577;

C 8 B 8 = (22 ∙ 3) ∙ (2 · 23) · (2 · 673) ∙ (2 · 75633) = 25 ∙ 3 ∙ 23 ∙673 ∙ 75633.

ПРИМЕР 2: В=16; С=25.

C 2 B 2 = (32 ) ∙ (41) = 32 ∙ 41;

C 4 B 4 = (32 ) ∙ (41) · (881) =32 ∙ 41 · 881;

C 6 B 6 = (32 ) ∙ (41) ∙ (22 ∙ 3) ∙ (13 · 37) · (3 ∙ 7 · 61) = 33 · 7 ∙ 13· 37 ∙ 41 ∙ 61;

C 8 B 8 = (32 ) ∙ (41) ∙ (881) ∙ (17 ·26833) = 32 ∙ 41 ∙ 881 ∙ 17 ·26833.

Из анализа уравнений /13/, /14/, /15/ и /16/ и соответствующих им числовых примеров следует:

- при заданном показателе степени n , если он четное число, число А n = С n - Bn раскладывается на вполне определенное количество вполне определенных алгебраических множителей;

- при любом показателе степени n , если он четное число, в алгебраическом выражении (Cn - Bn ) всегда имеются множители ( C - B ) и ( C + B ) ;

- каждому алгебраическому множителю соответствует вполне определенный числовой множитель;

- при заданных значениях чисел В и С числовые множители могут быть простыми числами или составными числовыми множителями;

- каждый составной числовой множитель является произведением простых чисел, которые частично или полностью отсутствуют в составе других составных числовых множителей;

- величина простых чисел в составе составных числовых множителей увеличивается с увеличением этих множителей;

- в состав наибольшего составного числового множителя, соответствующего наибольшему алгебраическому множителю, входит наибольшее простое число в степени, меньшей показателя степениn (чаще всего в первой степени).

ВЫВОДЫ: дополнительные обоснования подтверждают заключение о том, что великая теорема Ферма не имеет решения в целых положительных числах.

Автор: Николай Михайлович Козий,

инженер-механик

E-mail: nik_krm@mail.ru

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:28:36 19 марта 2016
Куда мне обратиться за юридичеким доказательством теоремы Ферма
20:09:42 14 февраля 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
15:54:29 25 ноября 2015
Доказательство совершенно неправильное, иначе бы до него дошел бы какой-нибудь Эйлер (который сам для некоторых n доказательство нашел) ещё пару веков назад.Ошибка здесь: > Из уравнения /2/ следует, что при заданных значениях чисел A и B > множитель (A+B) имеет одно и тоже значение при любых значениях > показателя степени n, следовательно, он является делителем числа С. Что за бред? Из того, что C^n делится на A+B не следует, что C делится на A+B.
Сергей13:54:13 12 марта 2012Оценка: 2 - Плохо

Смотреть все комментарии (5)
Работы, похожие на Статья: Краткое доказательство великой теоремы Ферма

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(149898)
Комментарии (1829)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru