Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Краткие сведения и задачи по курсу векторной и линейной алгебры

Название: Краткие сведения и задачи по курсу векторной и линейной алгебры
Раздел: Рефераты по математике
Тип: контрольная работа Добавлен 11:09:20 28 октября 2010 Похожие работы
Просмотров: 577 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Контрольная работа

Краткие сведенияи задачи по курсу векторной и линейной алгебры


Векторная алгебра

Вариант №21

1. Найти скалярное произведение .

2. При каком значении α векторы и ортогональны?

;;;

;;;

Два вектора ортогональны, когда их скалярное произведение равно нулю.

3. Для прямой М1 М2 написать уравнение с угловым коэффициентом, в отрезках и общее уравнение. Начертить график прямой. М1 (0,-3) М2 (2,1).

Общий вид уравнения прямой с угловым коэффициентом записывается в виде:


y-y1 =k(x-x1 ),

значит для прямой М1 М2

у+3=kx

Общий вид уравнения прямой, проходящей через две точки записывается в виде:

,

значит для прямой М1 М2

Общий вид уравнения прямой в отрезках записывается в виде:

,

Здесь


Уравнения прямой в отрезках для прямой М1 М2

;

4. В треугольнике М0 М1 М2 найти уравнение медианы, высоты, проведенных их вершины М0 , а также уравнение средней линии EF, параллельной основанию М1 М2 .(М0 (-1,-2); М1 (0,-3); М2 (2,1)).

Найдём координаты точки М3 , координаты середины стороны М1 М2 :

уравнения прямой, проходящей через две точки записывается в виде:

,

уравнение для высоты М0 М3 :

Найдём уравнение прямой М1 М2 :

Из условия перпендикулярности (k2 =-1/k1 ) следует, что k2 =1/2.

Уравнения прямой с угловым коэффициентом записывается в виде:

y-y1 =k(x-x1 ),

тогда уравнение для высоты примет вид:

y+1= (x+2)/2

или

x+2y=0.

Расстояние от точки М(x0 ,y0 ) до прямой Ax+By+c=0 находится по формуле:

Чтобы найти длину высоту, найдём расстояние от точки М0 (-3,-5) до прямойМ1 М2 , уравнение которой имеет вид -x+2y-4=0. Подставим данные в формулу(1):

Найдём координаты точек Е иF.

Для точки Е: x=-1/2; y=-5/2; E(-1/2;-5/2).

Для точки F: x=1/2; y=-1/2; F(1/2;-1/2).

Уравнение прямой EF:

y+5/2=-2x-1 или 2x+y+3,5=0.

5. По каноническому уравнению кривой второго порядка определить тип кривой, начертить её график. Найти координаты фокусов, вершин и центра (для центральной кривой).

(1)

Воспользуемся параллельным переносом (O’(-3,-1))


(2)

Подставим (2) в (1), получим

кривая второго порядка является эллипсом.

F1 (c;0); F2 (-c;0).

т.к.

Координаты центра: O’(-3,-1).

6. Преобразовать к полярным координатам уравнения линии.

1)

2)

Первое уравнение представляет собой (при любых значениях φ) полюс О. Второе – дает все точки линии, в том числе полюс. Поэтому первое уравнение можно отбросить. Следовательно, получаем:


Линейная алгебра

Матрицы

Ответы на вопросы

1. Дайте определение обратной матрицы. Какие вы знаете способы вычисления обратной матрицы?

Матрица В называется обратной для матрицы А, если выполняется условие АВ=ВА=Е, где Е – единичная матрица. Способы вычисления обратной матрицы: 1) использование алгебраических дополнений; 2) привести исходную матрицу к ступенчатому виду методом Гаусса, после чего необходимо преобразовать её в единичную .

2. Как записывается система уравнений в матрично-векторной форме? Как найти решение системы уравнений при помощи обратной матрицы?

Система уравнений в матрично-векторной форме записывается в виде: .

Решение системы уравнения при помощи обратной матрицы:

3. Сформулируйте, в чем состоит процедура Гаусса и для решения каких линейных задач применяется?

Процедура Гаусса используется для решения систем линейных уравнений и состоит в следующем:

Выполняются элементарные преобразования, вследствие чего можно получить два исхода:

1. получается строчка, в которой до черты стоят нули, а после – ненулевое число, тогда решения нет;

2. система приводится к лестничному виду.

Если в системе лестничного вида число уравнений совпадает с числом неизвестных, то решение единственное.

Если число уравнений меньше чем число неизвестных, то решений бесконечное множество. В этом случае неизвестные разделяются на зависимые и свободные. Число зависимых неизвестных совпадает с числом уравнений.

Задача1.

X4-свободная переменная

r = 3

система совместима.

Задача2

т.к. detA0, то матрица является невырожденной.

А11 =3;А12 = -1;А13 = -10;А21 =0;А22 =0;А23 = -1;А31 =0;А32 = -1;А33 = -1.


;

.

.

.

5. Найти скалярное произведение .

6. При каком значении α векторы и ортогональны?

;;;

;;;

Два вектора ортогональны, когда их скалярное произведение равно нулю.

7. Для прямой М1 М2 написать уравнение с угловым коэффициентом, в отрезках и общее уравнение. Начертить график прямой. М1 (2,-2) М2 (1,0).

Общий вид уравнения прямой с угловым коэффициентом записывается в виде:

y-y1 =k(x-x1 ),

значит для прямой М1 М2

у+2=k(x-2)

Общий вид уравнения прямой, проходящей через две точки записывается в виде:

,


значит для прямой М1 М2

Общий вид уравнения прямой в отрезках записывается в виде:

,

здесь

Уравнения прямой в отрезках для прямой М1 М2

;

y=-2x+2

8. В треугольнике М0 М1 М2 найти уравнение медианы, высоты, проведенных их вершины М0 , а также уравнение средней линии EF, параллельной основанию М1 М2 .(М0 (-3,-5); М1 (2,-2); М2 (1,0)).

Найдём координаты точки М3 , координаты середины стороны М1 М2 :

уравнения прямой, проходящей через две точки записывается в виде:

,

уравнение для высоты М0 М3 :

Найдём уравнение прямой М1 М2 :

Из условия перпендикулярности (k2 =-1/k1 ) следует, что k2 =-1/2.

Уравнения прямой с угловым коэффициентом записывается в виде:

y-y1 =k(x-x1 ),

тогда уравнение для высоты примет вид:

y+5= -(x+3)/2

или

x+2y+13=0.

Расстояние от точки М(x0 ,y0 ) до прямой Ax+By+c=0 находится по формуле:

Чтобы найти длину высоту, найдём расстояние от точки М0 (-3,-5) до прямойМ1 М2 , уравнение которой имеет вид 2x+y-2=0. Подставим данные в формулу(1):

Найдём координаты точек Е иF.

Для точки Е: x=-1/2; y=-7/2; E(-1/2;-7/2).

Для точки F: x=-1; y=-5/2; F(-1;-5/2).

Уравнение прямой EF:

y+7/2=-2x-1 или 2x+y+4,5=0.

9. По каноническому уравнению кривой второго порядка определить тип кривой, начертить её график. Найти координаты фокусов, вершин и центра (для центральной кривой).

(1)

Воспользуемся параллельным переносом (O’(-2,2))

(2)

Подставим (2) в (1), получим

кривая второго порядка является эллипсом.

F1 (c;0); F2 (-c;0).

т.к.

Координаты центра: O’(-2,2).

10. Преобразовать к полярным координатам уравнения линии.

1)

2)

Первое уравнение представляет собой (при любых значениях φ) полюс О. Второе – дает все точки линии, в том числе полюс,. Поэтому первое уравнение можно отбросить. Следовательно получаем:

Ответы на вопросы

4. Дайте определение обратной матрицы. Какие вы знаете способы вычисления обратной матрицы?

Матрица В называется обратной для матрицы А, если выполняется условие АВ=ВА=Е, где Е – единичная матрица. Способы вычисления обратной матрицы: 1) использование алгебраических дополнений; 2) привести исходную матрицу к ступенчатому виду методом Гаусса, после чего необходимо преобразовать её в единичную .

5. Как записывается система уравнений в матрично-векторной форме? Как найти решение системы уравнений при помощи обратной матрицы?

Система уравнений в матрично-векторной форме записывается в виде:

.

Решения системы уравнения при помощи обратной матрицы:

6. Сформулируйте, в чем состоит процедура Гаусса и для решения каких линейных задач применяется?

Процедура Гаусса используется для решения систем линейных уравнений и состоит в следующем:

Выполняются элементарные преобразования, вследствие чего можно получить два исхода:

3. получается строчка, в которой до черты стоят нули, а после – ненулевое число, тогда решения нет;

4. система приводится к лестничному виду.

Если в системе лестничного вида число уравнений совпадает с числом неизвестных, то решение единственное.

Если число уравнений меньше чем число неизвестных, то решений бесконечное множество. В этом случае неизвестные разделяются на зависимые и свободные. Число зависимых неизвестных совпадает с числом уравнений.

Задача1.

r=2; система совместима.

х 3,x4 – свободные переменные

;.

Задача2.

т.к. detA0, то матрица невырождена.

А11 =-1; А12 =-3; А13 =-1;А21 =-3;А22 =1;А23 =2;А31 =2;А32 =-1;А33 = -3.

.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:28:36 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
15:54:29 25 ноября 2015

Работы, похожие на Контрольная работа: Краткие сведения и задачи по курсу векторной и линейной алгебры

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(149878)
Комментарии (1829)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru